跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/20 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王靜秀
研究生(外文):Ching-Hsiu Wang
論文名稱:6歲孩童與成人在數字和具體數量上的自動化處理
論文名稱(外文):Automatic processing of symbolic and non-symbolic number magnitude in 6-year-olds and adults
指導教授:阮啟弘阮啟弘引用關係
指導教授(外文):Chi-Hung Juan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:認知與神經科學研究所
學門:社會及行為科學學門
學類:心理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:73
中文關鍵詞:數字具體數量數值史楚普作業
外文關鍵詞:magnitudenumerical stroop tasksymbolicnon-symbolic
相關次數:
  • 被引用被引用:3
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:1
數量概念與數字一直是未來數學學習的基礎,然而孩童對於數量的認知概念有階段性的發展,在過去的研究中發現數字與數量之間的處理達至十分精熟狀態約是在7歲之後,因此6~8歲在數字概念的發展上是十分重要且關鍵的,但是許多研究之間的發現並不一致,再加上東、西方文化上的差異,而使得孩童對於數量認知概念的發展階段上有些許的不同。
本研究主要想探討孩童在數字與數量概念之間的自動化處理。利用數值史楚普作業(Numerical Stroop task) 去探討6歲孩童在進行物理大小判斷時受到數值大小的干擾程度。由於6歲是孩童正在建立數字系統的時期,而我們想瞭解孩童的數量概念,因此我們採用兩種(數字和圓點)方式去探討孩童對於數量的認知概念。然而我們的結果與先前的發現很不一致,我們發現6歲孩童在對數字的物理大小判斷上受到數值上的干擾,這表示孩童對於數字的處理上已經達到自動化,而且對於具體數量的處理上也十分精熟,相較於成人的實驗結果,孩童的表現受到具體數量的干擾高於數字,這意味著孩童目前較依賴以具體數量的方式處理,然而隨著對數字的使用頻繁而讓我們對於數量處理的方式有所改變,由此可知我們對於數量的認知概念會隨著年齡上的發展,逐漸地從具體概念發展至抽象概念。
透過此研究結果可以瞭解孩童的數量認知發展,在先前的研究中發現7歲之後的孩童在數字處理上達自動化,雖然6歲孩童的發展階段介於具體數量與數字間,但在我們的結果中發現6歲孩童不論在哪種情況中皆已達自動化處理,此結果顯示我們的孩童對於數量的處理上發展較早且快速,而且隨著數量認知上的發展孩童對於數量的處理會發生改變:由原本以具體數量為主要的處理方式轉變成以數字處理為主。

Numerical concepts have been the basis for mathematics learning. It is very important that stage of cognitive development for numerical of concept in children. Previous study found that the ability to automatically process numerical is approximately in 6-8 years old, but many studies findings are not consistent. Because ofthe Eastern and Western cultural differences may make the number of children for the concept development stage of cognitive slightly different.
Our study aims to investigate the number of children between the concepts in the Arabic number and numerical automated processing. Using numerical Stroop tasks, this study examined whether 6 years old showed automatic processing of numerical magnitude. In this study children and adults performed numerical and physical size judgments on a symbolic (Arabic number) and non-symbolic (groups of dots) on numerical Stroop task.The outcomes would reveal whether an interference effect can be obtained irrespective of notation.
We found that 6 years old children showed automatic processing of numerical magnitude. Our results are different from previous studies’ findings about the onset age for automatic processing of numerical magnitude. In physical size comparison on both tasks by children revealed an interference effect for non-symbolic higher than symbolic notation, indicating that non-symbolic is related to the mathematical or cognitive abilities at the present stage. Therefore this development of numerical of with age and numerical concept developed from the concrete to the abstract concept. Because of we were increased frequency of use of abstract number that let we more mastery for Arabic number.

目錄
目錄 iv
第一章 1
前言 1
1.1數值史楚普作業 (Numerical Stroop Task) 2
1.1.1 大小一致性效果 5
1.1.2 促進效果(facilitation effect)與干擾效果(interference effect)的處理歷程 7
1.1.3數距效果(Distance effect ) 10
1.1.4大小一致性效果(Size congruity effect) 和數距效果(distance effect)在數量上的處理歷程 11
1.2 數量發展(Numerical magnitude development) 12
1.2.1 數字表徵與具體數量表徵(Symbolic and non-symbolic numerical representation) 13
1.2.2數字表徵之發展(Development of Symbolic numerical representation) 15
1.2.3具體數量表徵之發展(Development of Non-symbolic numerical representation) 17
1.2.4 數字與具體數量表徵之大小一致性效果(Symbolic and non-symbolic representation in the size congruity effect) 19
1.3研究動機與目的(Propose) 20
第二章實驗1 23
2.1數字判斷(symbolic magnitude) 23
2.1.1受試者(Subjects) 23
2.1.2實驗程序(Procedure) 23
2.1.3數值史楚普作業(Numerical Stroop task) 24
2.2 實驗1之結果(Results) 26
2.2.1孩童實驗之結果 27
2.2.2孩童實驗結果之討論 31
2.2.3成人實驗之結果 32
2.2.4成人實驗結果之討論 36
2.3實驗1-1 37
2.3.1受試者(Subjects) 37
2.3.2實驗程序(Procedure) 37
2.3.3 數值史楚普作業(Numerical Stroop task) 37
2.4 實驗1-1之結果(Result) 38
2.4.1 成人實驗之結果 38
2.5孩童與成人實驗結果之比較 46
2.5.1孩童與成人實驗結果之討論 48
第三章實驗2 50
3.1 具體數量判斷(non-symbolic magnitude) 50
3.1.1受試者(Subjects) 50
3.1.2實驗程序(Procedure) 50
3.1.3 數值史楚普作業(Numerical Stroop task) 51
3.2 實驗2之結果(Results) 52
3.2.1孩童實驗之結果 52
3.2.2孩童實驗結果之討論 56
3.2.3成人實驗之結果 57
3.2.4成人實驗結果之討論 60
3.2.5成人與孩童實驗結果之比較 60
3.2.6孩童與成人實驗結果之討論 61
3.3 孩童與成人在數字與具體數量實驗結果之比較 62
第四章 綜合討論 64
4.1實驗發現與討論 64
4.2數字(symbolic magnitude)與具體數量(non-symbolic magnitude)之比較 64
4.3兒童發展趨勢 67
4.4 結論 67
4.5研究限制與未來計畫 68
參考文獻 69

Aster, M. G. Von, Psychiatry, A., Red, G., & Hospitals, C. (2007). Review Number development and developmental dyscalculia, 868–873.
Butterworth, M. D. B. (1997). A dissociation of number meanings. Cognitive Neuropsychology, 14(4), 613–636. doi:10.1080/026432997381501
Chen, C., & Stevenson, H. W. (1988). Cross-linguistic differences in digit span of preschool children. Journal of Experimental Child Psychology, 46(1), 150–158. doi:10.1016/0022-0965(88)90027-6
Cohen Kadosh, R., & Henik, A. (2006). A common representation for semantic and physical properties. Experimental Psychology (formerly “Zeitschrift für Experimentelle Psychologie”), 53(2), 87–94. doi:10.1027/1618-3169.53.2.87
Cohen Kadosh, R., Lammertyn, J., & Izard, V. (2008). Are numbers special? An overview of chronometric, neuroimaging, developmental and comparative studies of magnitude representation. Progress in neurobiology, 84(2), 132–47. doi:10.1016/j.pneurobio.2007.11.001
Cohen Kadosh, R., & Walsh, V. (2009). Numerical representation in the parietal lobes: abstract or not abstract? The Behavioral and brain sciences, 32(3-4), 313–28; discussion 328–73. doi:10.1017/S0140525X09990938
Dehaene, S, Dehaene-Lambertz, G., & Cohen, L. (1998). Abstract representations of numbers in the animal and human brain. Trends in neurosciences, 21(8), 355–61. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9720604
Dehaene, Stanislas, Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive neuropsychology, 20(3), 487–506. doi:10.1080/02643290244000239
Dehaene, S., & Akhavein, R. (1995). Attention, automaticity, and levels of representation in number processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21((2)), 314.
Gebuis, T., Cohen Kadosh, R., De Haan, E., & Henik, A. (2009). Automatic quantity processing in 5-year olds and adults. Cognitive Processing, 10(2), 133–142. Retrieved from http://discovery.ucl.ac.uk/177420/
Gebuis, T., Herfs, I. K., Kenemans, J. L., de Haan, E. H. F., & van der Smagt, M. J. (2009). The development of automated access to symbolic and non-symbolic number knowledge in children: an ERP study. The European journal of neuroscience, 30(10), 1999–2008. doi:10.1111/j.1460-9568.2009.06994.x
Gebuis, T., Kenemans, J. L., de Haan, E. H. F., & van der Smagt, M. J. (2010). Conflict processing of symbolic and non-symbolic numerosity. Neuropsychologia, 48(2), 394–401. doi:10.1016/j.neuropsychologia.2009.09.027
Girelli, L., Lucangeli, D., & Butterworth, B. (2000). The development of automaticity in accessing number magnitude. Journal of experimental child psychology, 76(2), 104–22. doi:10.1006/jecp.2000.2564
Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental psychology, 44(5), 1457–65. doi:10.1037/a0012682
Henik, A., & Tzelgov, J. (1982). Is three greater than five : The relation between physical and semantic size in comparison tasks, 10(4).
Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., … Ischebeck, A. (2005). Neural correlates of distance and congruity effects in a numerical Stroop task: an event-related fMRI study. NeuroImage, 25(3), 888–98. doi:10.1016/j.neuroimage.2004.12.041
Kazem, A. M., Alzubiadi, A. S., Alkharusi, H. A., Yousif, Y. H., Alsarimi, A. M., Al-Bulushi, S. S., ... & Alshammary, B. M. (2009). A Normative Study of the Raven Coloured Progressive Matrices Test for Omani Children Aged 5-11 Years, 34(1), 37–51.
Kucian, K., & Kaufmann, L. (2009). A developmental model of number representation. Behavioral and Brain Sciences, 32(3-4), 340–341.
Miller, K. F., Kelly, M., & Zhou, X. (2005). Learning mathematics in China and the United States. In Handbook of mathematical cognition (pp. 163–178). Handbook of mathematical cognition.
Mussolin, C., & Noël, M.-P. (2007). The nonintentional processing of Arabic numbers in children. Journal of Clinical and Experimental Neuropsychology, 29(3), 225–234. doi:10.1080/13803390600629759
Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–93. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15046729
Rubinsten, O., Henik, A., Berger, A., & Shahar-Shalev, S. (2002). The development of internal representations of magnitude and their association with Arabic numerals. Journal of Experimental Child Psychology, 81(1), 74–92. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11741375
Schwarz, W, & Heinze, H. J. (1998). On the interaction of numerical and size information in digit comparison: a behavioral and event-related potential study. Neuropsychologia, 36(11), 1167–79. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9842762
Schwarz, Wolfgang, & Ischebeck, A. (2003). On the relative speed account of number-size interference in comparative judgments of numerals. Journal of Experimental Psychology: Human Perception and Performance, 29(3), 507–522. doi:10.1037/0096-1523.29.3.507
Stanislas Dehaene, Serge Bossini, and P. G. (1993). The Mental Representation of Parity and Number Magnitude. Journal of Experimental Psychology.
Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science (New York, N.Y.), 210(4473), 1033–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7434014
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. doi:10.1037/h0054651
Szucs, D., & Soltész, F. (2007). Event-related potentials dissociate facilitation and interference effects in the numerical Stroop paradigm. Neuropsychologia, 45(14), 3190–202. doi:10.1016/j.neuropsychologia.2007.06.013
Tang, J., Critchley, H. D., Glaser, D. E., Dolan, R. J., & Butterworth, B. (2006). Imaging informational conflict: a functional magnetic resonance imaging study of numerical stroop. Journal of cognitive neuroscience, 18(12), 2049–62. doi:10.1162/jocn.2006.18.12.2049
Tzelgov, J., Henik, a, & Berger, J. (1992). Controlling Stroop effects by manipulating expectations for color words. Memory & cognition, 20(6), 727–35. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1435275
Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. doi:10.1016/j.tics.2003.09.002
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10594312
Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental science, 8(1), 88–101. doi:10.1111/j.1467-7687.2005.00395.x
Zhou, X., Chen, Y., Chen, C., Jiang, T., Zhang, H., & Dong, Q. (2007). Chinese kindergartners’ automatic processing of numerical magnitude in stroop-like tasks. Memory & cognition, 35(3), 464–70.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top