(35.175.180.108) 您好!臺灣時間:2019/11/16 02:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:畢德成
論文名稱:希伯特頻譜於地震資料之應用
指導教授:蔣偉寧蔣偉寧引用關係朱佳仁朱佳仁引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文出版年:2000
畢業學年度:88
語文別:中文
論文頁數:150
中文關鍵詞:希伯特頻譜
相關次數:
  • 被引用被引用:53
  • 點閱點閱:268
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
對於非線性和非穩態資料分析,黃鍔博士利用希伯特轉換(Hilbert transform)發展一種新的分析方法名為HHT,HHT包含了前處理方法經驗模態分解法 (Empirical Mode Decomposition)簡稱(EMD),利用經驗模態分解法可以把原始資料分解成多個內建模態函數(Intrinsic mode function) 簡稱(IMF)分量。
本文利用HHT分析921集集大地震之地震資料,並且就HHT前處理方法所得到的分量,近一步研究各個分量的特性,另外比較FFT與HHT不同處,並探討FFT失敗的原因。
Abstract
A new analysis method for non-stationary and nonlinear data has been developed by Dr. Huang (1998). This so called Huang-Hilbert Transform (HHT) includes "Empirical Mode Decomposition" (EMD) and Hilbert Transfromation. After the Empirical Mode Decomposition, the original data can be divided into several "Intrinsic Mode Function" (IMF) components. IMF components This research uses the HHT method to analyze the earthquake data of 921 Gi-Gi Earthquake. Also, the results of HHT method are compared with that of traditional Fast Fourier Transform (FFT). This comparison reveals the deficiency of FFT in analyzing non-stationary and nonlinear data.
目 錄
第一章 緒論
1.1研究動機……………………………………………………1.
1.2文獻回顧…….…………………………...…………………3.
第二章 即時頻率及內建模態函數
2.1即時頻率……………………………………..……………11.
2.2內建模態函數….……………………….…………………15.
第三章 希伯特頻譜
3.1經驗模態分解法………………………….………….……16.
3.2正交性與完整性………………….……………………….25.
3.3希伯特反應譜…………………….……………………….28.
第四章 資料分析
4.1人工資料分析…………………….……………………….31.
4.2集集大地震資料分析…………….………………………34.
第五章 二維頻譜
5.1反應譜、傅立葉頻譜與邊際頻譜….………….………...37.
5.2 IMF分量的代表性…….……………………………...….40.
第六章 結論與建議
6.1結論……………………………………………………….42.
6.2建議……………………………………………………….43.
參考文獻……………………………………………………….44.
附表…………………………………………………………….47.
附圖…………………………………………………………….51.
參 考 文 獻
1. Anil K.. Chopra,"Dynamics of Structures,theory and applications to earthquake engineering ", Englewood Cliffs,New Jersey, 1995.
2. Brigham, E.0.,"The Fast Fourier Transform", Prentice-Hall, Englewood Cliffi, NJ.,1974.
3. Broclcwell, P. J. and R. A. Davis, "Time Series: Theory and Methods. "Springer-Verlag. New York, 1991.
4. Chan, Y.T., "Wavelet Basics." Kluwer Academic, Boston., 1995.
5. Classen, T. A. C. M. and W. F. Q. Meclenbrauker, " The Signer distribution- A tool for time-frequency signal analysis- Part 1: Continuous time signal. Philips Jour. Research., 35, 217- 250,1980.; Part 2: Discrete''rime signal. Philips Jour. Research., 35, 276-300, 1980.;
Part 3: Relations with other time-frequency signal transformations. Philips Jour. Research., 35, 372-389., 1980.;
6.Copson, E. T, "Asymptotic Expansions" Cambridge University Press, Cambridge., 1967.
7.Dazin, P. G., "Nonlinear Systems", Cambridge University Press, Cambridge., 1992.
8.D. E. Newland "An introduction to Random Vibrations, Spectral & Wavelet Analysis". John Wiley & Sons, Inc., New York., 1993.
9.Gabor, D., " Theory of communication ", Proc. IEE, 93, 429-457., 1946.
10.Gravity wave characteristics in the middle atmosphere derived form the EMD method , Xun Zhu , Zeng Shen , Stephen D.Eckermann , Bittner , Fsamu Hirotaand Jeng-hwa Yee.
11.J.N. Pandey. "The Hilbert transform of Schwartz distributions andapplications" New York : John Wiley, c 1996.
12. Julius S. Bendat & Allan 0. Piersol, "Random Data: Analysis and Measurement Procedures", John Wiley & Sons, New York, 1986.
13.Long, S. R., N. E. Huang, C. C. lung, M. L. Wu, R. Q. Lin, E. Mollo-Christensen, and Y. Yuan, The Hilbert Techniques: An alternateapproach for non-steady time series analysis. IEEEGeoscience Remote Sensing Soc. Lttr. 3, 6-11., 1995.
14."MATLAB Signal Processing Toolbox User''s Guide", The Mathwaork Inc., 1984.
15. Huang N.E , " The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis ", NASA.(manuscript), 1996.
16.Huang N.E , Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung & H. H. Liu, " The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis ", Poceedings of Royal Society of London, Series A 454, pp903-995,1998.
17. Prisetley, M. B., Evolutionary spectra and non-stationary processes. J. Roy. Statist. Soc. Ser. B 27, 204-237., 1965.
18.Scherbaum, F. "Basic concepts in Digital Processing forseismologists", Springer-Verlag, Berlin., 1994.
19. Tang, Jhy-Pying , Lee, J.-S., and Li , W.S , "Studying on a New Energy-Dissipation Device System for Bridge.", Proc. Natl. Sci. Counc. ROC(A), Vol. 20, No.5, pp.573-585, 1996.
20.Titchmarsh, E. C., " Introduction to the theory of Fourier Integrals ",Oxford University Press, Oxford., 1948.
21.Vautard, R. and M. Ghil, " Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series, Physica .0., 35,3 95-424., 1989.
22.Whitham, G. B@ "Linear and Nonlinear waves." John Wiley, New York, NY., 1975.
23.Yen, N. C., " Wave packet decomposition. ", J. Acoust Soc. Am., 95, 889-896., 1994.
24.羅俊雄,衩地震強地動特性探討",1999.
25.蔡義本、黃明偉、李偉頌、趙曉玲,?年集集大地震地
動記錄資料初步分析結果", 1999.
26.羅俊雄、吳子修、紀繼耀、吳詩斌, "台北盆地場址效應之識
別分析與樓房結構之震後損失評估"
27.陳世國,"Hilbert Spectrum於結構工程上之應用"
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔