|
[1]D. L. Lee, Electromagnetic Principles of Integrated Optics. New York: John Wiley&Sons, 1986. [2]E. Ozbay, "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, vol. 311, pp. 189-193, Jan. 2006. [3]R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, "Geometries and materials for subwavelength surface plasmon modes," J. Opt. Soc. Am. A, vol. 21, pp. 2442-2446, Dec. 2004. [4]J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, "Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization," Phys. Rev. B, vol. 73, pp. 035407, Jan. 2006. [5]A. Hosseini and Y. Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express, vol. 14, pp. 11318-11323, Nov. 2006. [6]G. Lifante, Integrated Photonics:Fundamentals. New York: John Wiley & Sons, 2003. [7]R. Kashyap, Fiber Bragg Gratings, 2nd ed. New York: Elsevier, 2010. [8]S. Jette-Charbonneau and P. Berini, "Theoretical performance of Bragg gratings based on long-range surface plasmon-polariton waveguides," J. Opt. Soc. Am. A, vol. 23, pp. 1757-1767, Jul. 2006. [9]S. Jette-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, "Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides," Opt. Express, vol. 13, pp. 4674-4682, Jun. 2005. [10]A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, "Compact Bragg gratings for long-range surface plasmon polaritons," J. Lightw. Technol., vol. 24, pp. 912-918, Feb. 2006. [11]J. W. Mu and W. P. Huang, "A Low-Loss Surface Plasmonic Bragg Grating," J. Lightw. Technol., vol. 27, pp. 436-439, Feb. 2009. [12]S. Jette-Charbonneau and P. Berini, "External cavity laser using a long-range surface plasmon grating as a distributed Bragg reflector," Appl. Phys. Lett., vol. 91, pp. 181114, Oct. 2007. [13]B. Wang and G. P. Wang, "Plasmon Bragg reflectors and nanocavities on flat metallic surfaces," Appl. Phys. Lett., vol. 87, pp. 013107, Jul. 2005. [14]J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, and S. G. Wen, "A wide bandgap plasmonic Bragg reflector," Opt. Express, vol. 16, pp. 4888-4894, Mar. 2008. [15]Y. K. Gong, L. R. Wang, X. H. Hu, X. H. Li, and X. M. Liu, "Broad-bandgap and low-sidelobe surface plasmon polariton reflector with Bragg-grating-based MIM waveguide," Opt. Express, vol. 17, pp. 13727-13736, Aug. 2009. [16]Z. H. Han, E. Forsberg, and S. L. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Tech. Lett., vol. 19, pp. 91-93, Jan. 2007. [17]Y. F. Liu, Y. Liu, and J. Kim, "Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles," Opt. Express, vol. 18, pp. 11589-11598, May 2010. [18]J. Park, H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express, vol. 16, pp. 413-425, Jan. 2008. [19]W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, Aug. 2003. [20]S. A. Maier, Plasmonics: Fundamentals and Applications. New York: Springer, 2007. [21]N. N. Feng and L. Dal Negro, "Plasmon mode transformation in modulated-index metal-dielectric slot waveguides," Opt. Lett., vol. 32, pp. 3086-3088, Nov. 2007. [22]M. A. Ordal, R. J. Bell, J. R. W. Alexander, L. L. Long, and M. R. Querry, "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W," Appl. Opt., vol. 24, pp. 4493-4499, Dec. 1985. [23]P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B, vol. 6, pp. 4370-4379, Dec. 1972. [24]COMSOL Multiphysics, User''s Guide, ver. 3.5a , COMSOL AB, 2008. [25]J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. New York: John Wiley&Sons, 2002. [26]P. Yeh, Optical Waves in Layered Media. New York: John Wiley & Sons, 1988.
|