(35.171.146.16) 您好!臺灣時間:2019/09/17 12:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:艾利南
研究生(外文):Rizal Arifin
論文名稱:由分子動力學模擬探討層狀石墨烯的成長與碳化矽基板上多層石墨烯的熱穩定性
論文名稱(外文):Growth of layered graphene and the thermal stability of multilayered graphene on silicon carbide substrate by molecular dynamics simulation
指導教授:賴山強
指導教授(外文):San-kiong Lai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:64
中文關鍵詞:石墨烯分子動力學模擬
外文關鍵詞:graphenemolecular dynamics simulation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:696
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:326
  • 收藏至我的研究室書目清單書目收藏:0
我們使用了分子動力學模擬和模擬退火方法來研究石墨烯的磊晶成長過程和石墨 烯
納米帶(6H - SiC(0001))的熱穩定性質。為了理解其背後機制,我們使用了兩種 勢 能 作 為 我 們 的 參 數 , 即 目 前 廣 泛 被 應 用 的 Tersoff 勢 能 [Phys 。 Rev 。 B 39 , 5566 ( 1989 ) ] , 以 及 由 Erhart 和 Albe 提 出 的 Tersoff 勢 能 修 正 的 版 本 [Phys。 Rev。 B 71,035211-1(2005)]。我們發現,一般狀況下第二個版本的勢能 在預測石墨烯 開始成長在基板上的溫 ,會和實驗結果比較一致。我們分析了石墨 度 烯 的碳原子平均鍵距,徑向分布函數,束縛能以及基板和石墨烯 的間距來確認模擬 結果的合理性。石墨烯
結構出現的溫 1325K 和實驗上預測的溫度非常一致。至於 度 熱穩定度方面,我們分析了無限大石墨 烯 層在靠近 SiC 基板的一些表面型態學上 的特性,和目前文獻上的結果是一致的。最後,我們得到了一個臨界退火溫度 , 2000K。如果系統溫度低於臨界溫度,石墨緩衝層會比較穩定。如果大於這個溫度, 緩衝層開始會有從基板向上傾斜的趨勢。
The molecular dynamics simulation and simulated annealing method were applied to study
the growth process of graphene and the thermal stability of layered graphene nanoribbons on
6H-SiC(0001) substrate. With an intention to understand the mechanisms that govern these
panoramas, we tested two empirical potentials, i.e. the widely used Tersoff potential [Phys.
Rev. B 39, 5566 (1989)] and its more refined version published years later by Erhart and Albe
[Phys. Rev. B 71, 035211-1 (2005)]. We found that the modified Tersoff potential
communicated by Erhart and Albe is generally more banausic for growing layered graphene on
6H-SiC substrate for the annealing temperature at which the graphene structure comes into
view is very close to that observed in epitaxially grown graphene experiments. We evaluate our
grown layered graphene by checking the reasonableness of the average carbon-carbon bond-
length, pair correlation function, binding energy and also comparing with the experimentally
grown epitaxial graphene the distances among the overlaid layers of graphene and substrate
surface. The annealing temperature we obtained at 1325 K at which the graphitic structure just
comes into view is reasonably close to the experimentally observed pit formation. On the
thermal stability of layered graphene, the characteristics of the surface morphology of an
infinite graphene sheet that we positioned near SiC substrate are consistent with other
simulation works. Most importantly we obtained a threshold annealing temperature at around
2000 K below which the structural behavior of the carbon buffer layer is thermally stable and
above which one sees the graphitic structures show tendency to slant up from the substrate.
The molecular dynamics simulation and simulated annealing method were applied to study the growth process of graphene and the thermal stability of layered graphene nanoribbons on 6H-SiC(0001) substrate. With an intention to understand the mechanisms that govern these panoramas, we tested two empirical potentials, i.e. the widely used Tersoff potential [Phys. Rev. B 39, 5566 (1989)] and its more refined version published years later by Erhart and Albe Phys. Rev. B 71, 035211-1 (2005)]. We found that the modified Tersoff potential communicated by Erhart and Albe is generally more banausic for growing layered graphene on 6H-SiC substrate for the annealing temperature at which the graphene structure comes into view is very close to that observed in epitaxially grown graphene experiments. We evaluate our grown layered graphene by checking the reasonableness of the average carbon-carbon bond-
length, pair correlation function, binding energy and also comparing with the experimentally grown epitaxial graphene the distances among the overlaid layers of graphene and substrate surface. The annealing temperature we obtained at 1325 K at which the graphitic structure just comes into view is reasonably close to the experimentally observed pit formation. On the thermal stability of layered graphene, the characteristics of the surface morphology of an infinite graphene sheet that we positioned near SiC substrate are consistent with other simulation works. Most importantly we obtained a threshold annealing temperature at around
2000 K below which the structural behavior of the carbon buffer layer is thermally stable and above which one sees the graphitic structures show tendency to slant up from the substrate.
[1 ] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
[2 ] Y. Zhang, Y.W. Tan, H.L. Stormer and P. Kim, Nature 438, 201 (2005).
[3 ] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).
[4 ] C.L. Kane, Nature 438, 168 (2005).
[5 ] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov and A.K. Geim, PNAS 102, 10451 (2005).
[6 ] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, Nat. Mater. 8, 203 (2009).
[7 ] S.V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
[8 ] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau Nano Lett. 8, 902 (2008).
[9 ] S. Ghosh, D.L. Nika, E.P. Pokatilov1 and A.A. Balandin, New J. Phys. 11, 095012 (2009).
[10] C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008).
[11] M.M. Shokrieh and R. Rafiee, Mat. Design 31, 790 (2010).
[12] C. Li, T.A. Chou, Int. J. Solid Struct. 40, 2487 (2003).
[13] G.V. Lier, C.V. Alsenoy, V.V. Doren, and P. Geerlings, Chem. Phys. Lett. 326, 181 (2000).
[14] K.N. Kudin, G.E. Scuseria, and B.I. Yakobson, Phys. Rev. B 64, 235406 (2001).
[15] J.R. Xiao, B.A. Gama, and Jr. J.W. Gillespie, Int. J. Solid Struct. 42, 3075 (2005).
[16] C.D. Reddy, S. Rajendran, and K.M. Liew, Int. J. Nanosci. 4, 631 (2005).
[17] Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, and F. Wang, Nature, 459, 820 (2009).
[18] A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).
[19] F.N. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitag, Y.M. Lin, J. Tsang, V. Perebeinos, and P. Avouris, Nano Lett. 9, 1039 (2009).
[20] Z. Lee, K.J. Jeon, A. Dato, R. Erni, T.J. Richardson, M. Frenklach, and V. Radmilovic, Nano Lett. 9, 3365 (2009).
[21] C. Chen, S. Rosenblatt, K.I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H.L. Stormer, T.F. Heinz, and J. Hone, Nature Nanotech. 4, 861 (2009).
[22] S.M. Paek, E. Yoo, and I. Honma, Nano Lett. 9, 72 (2009).
[23] D.H. Wang, D.W. Choi, J. Li, Z.G. Yang, Z.M. Nie, R. Kou, D.H. Hu, C.M. Wang, L.V. Saraf, J.G. Zhang, I.A. Aksay, and J. Liu, Acs Nano 3, 907 (2009).
[24] M.D. Stoller, S.J. Park, Y.W. Zhu, J.H. An, and R.S. Ruoff, Nano Lett. 8, 3498 (2008).
[25] P. Ball, Phys. World 23, 24 (2010).
[26] Jannik C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature 446, 60 (2007).
[27] A. J. Van Bommel, J. E. Crombeen, and A. van Tooren, Surf. Sci. 48, 463 (1975).
[28] I. Forbeaux, J.-M. Themlin, and J.-M. Debever, Phys. Rev. B 58, 16396 (1998).
[29] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, J. Phys. Chem. B 108, 19912 (2004).
[30] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, Solid State Commun., 143, 92 (2007).
[31] J. B. Hannon and R. M. Tromp, Phys. Rev. B 77, 241404R (2008).
[32] J. Borysiuk, R. Bożek, W. Strupiński, A. Wysmołek, K. Grodecki, R. StJpniewski, and J. M. Baranowski, J. Appl. Phys. 105, 023503 (2009).
[33] Y. Qi, S.H. Rhim, G.F. Sun, M. Weinert, and L. Li, Phys. Rev. Lett, 105, 085502 (2010).
[34] S.W. Poon, W. Chen, Andrew T. S. Wee and E.S. Tok, Phys. Chem. Chem. Phys. 12, 13522 (2010).
[35] C. Tang, L. Meng, H. Xiao, and J. Zhong, J. Appl. Phys. 103, 063505 (2008).
[36] C. Lampin, C. Priester, C. Krzeminski, and L. Magaud, J. Appl. Phys. 107, 103514 (2010).
[37] C. Tang, L. Meng, L. Sun, K. Zhang, and J. Zhong, J. Appl. Phys. 104, 113536 (2008).
[38] J. Tersoff, Phys. Rev. Lett. 56, 632 (1986).
[39] J. Tersoff, Phys. Rev. B 37, 6991 (1988).
[40] J. Tersoff, Phys. Rev. B 38, 9902 (1988).
[41] J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).
[42] J. Tersoff, Phys. Rev. B 39, 5566 (1989).
[43] P. Erhart and K. Albe, Phys. Rev. B 71, 035211-1 (2005).
[44] S. Reich, J. Maultzsch and C. Thomsen, Phys. Rev. B 66, 035412 (2002).
[45] C. K. Gan and D.J. Srolovitz, Phys. Rev. B 81, 125445 (2010).
[46] LAMMPS code, http://lammps.sandia.gov.
[47] Pensl, G. et.al., SiC Material Properties, International Journal of High Speed Electronics and Systems, Vol. 15, No. 4 (2005) 705-745, (World Scientific, 2005).
[48] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).
[49] F. Varchon, F. Mallet, J.Y. Veuillen and L. Magaud, Phys. Rev. B 77, 235412 (2008).
[50] Y. Lifshitz, G. D. Lempert, and E. Grossmann, Phys. Rev. Lett. 72, 2753 (1994).
[51] R. Haerte, A. Baldereschi, and G. Galli. J. Non-Cryst. Solids 266-269, 740 (2000).
[52] D. Qian, W. K. Liu, S. Subramoney, and R. S. Ruoff, J. Nanosci. Nanotech. 3, 185 (2003).
[53] D. W. Brenner, Phys. Rev. B 42, 9458 (1990).
[54] L.A. Girifalco and R.A. Lad, J. Chem. Phys. 25, 693 (1956).
[55] A. Ito and H. Nakamura, Commun. Comput. Phys. 4, 592 (2008).
[56] D.W. Brenner, O. A Shenderova, J. A. Harrison, S.J. Stuart, B. Ni and S.B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔