(3.94.202.88) 您好!臺灣時間:2019/10/14 15:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:董慕愷
研究生(外文):Mu-Kai Tung
論文名稱:奈米金/氧化鈰觸媒之製備及在氧化反應之應用
論文名稱(外文):PREPARATION OF CERIA-SUPPORTED NANO-GOLD CATALYSTS AND ITS APPLICATION IN OXIDATION REACTION
指導教授:陳郁文陳郁文引用關係
指導教授(外文):Yu-Wen Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:109
中文關鍵詞:氧化鈰一氧化碳選擇性氧化燃料電池
外文關鍵詞:nanoparticleCO oxidationselective oxidation of CO in H2fuel cellceria oxidegold
相關次數:
  • 被引用被引用:0
  • 點閱點閱:199
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一直以來,金都被視為沒有活性的鈍態金屬物質,直到日本的Haruta博士於1989年發現當奈米級的金承載到擔體上時具有很高的活性,能夠在低溫環境催化一氧化碳氧化,金觸媒才開始被重視。雖然近年來對於金觸媒的研究很多,卻尚未有令人滿意的結果發表,顯示其仍有改善的空間。金觸媒的活性會隨製備方法、金的粒徑、形狀、反應環境及擔體而改變,沈澱固著法可將金粒子以半球型的方式承載於擔體上,進而增加金與擔體的接觸面積,且金粒子均勻散佈於擔體上,使反應活性提高。擔體需選擇可被部分還原的氧化金屬。本研究的主要目的,是製備出一種具有高活性的觸媒,能夠在室溫下完全氧化空氣中的一氧化碳, 並在富氫氣環境中除去一氧化碳而不造成氫氣的損失。
本研究將奈米級的金承載到一系列以不同方式製備氧化鈰擔體上,其中包含由Degussa公司取得之奈米氧化鈰(NanoCeria)以及由沈澱法製備之氧化鈰擔體。本研究中探討氧化鈰製備條件對於CO氧化反應之影響,包含酸鹼值(8到11)以及煆燒溫度(120到400oC)。承載型金觸媒是以沈澱固著法製備,以HAuCl4當作金的前驅物,並探討金的煆燒溫度(120以及180oC) 對反應活性的影響;在本研究中亦討論了加入錳於二氧化鈰中所製備之鈰錳複合擔體對於反應之影響。觸媒的物性鑑定使用包括X光繞射分析儀(XRD)、穿透式電子顯微鏡(TEM)、X光電子能譜儀(XPS)及氮吸附儀等儀器來量測。從XRD圖譜中可觀察到擔體皆為結晶良好的二氧化鈰,此外亦可發現XRD分析圖譜中偵測不到金的波峰,代表金的顆粒太小超過儀器的偵測限制(5奈米),使其無法量測;TEM圖中則可以清楚看出奈米級金粒子完全地均勻散佈於擔體上,粒徑均小於4奈米,並可觀察到二氧化鈰擔體的顆粒大小約為10到20奈米。XPS量測結果顯示在180oC煆燒所製備的金觸媒具有較多的元素態。
本研究以連續式固定床反應器來測試金承載於氧化鈰觸媒應用於一氧化碳氧化反應之活性。在所有的觸媒之中,金乘載於Degussa公司之二氧化鈰具有最高的CO氧化活性。比較金乘載於以不同製備條件之二氧化鈰擔體的活性,發現乘載於酸鹼值為10,400oC煆燒下製備之二氧化鈰擔體之金觸媒有最高的反應活性;此外,研究結果亦顯示當金在180oC煆燒時,對於室溫一氧化碳之氧化具有較高的活性。
至於選擇性氧化方面,結果同樣顯示從Degussa公司所取得之氧化鈰具有最高的活性,這部分與室溫一氧化碳氧化反應之結果相同。若是針對金的煆燒溫度來探討時,卻發現當金以120oC煆燒,其對於50oC以上反應的活性表現是優於180oC的,此結果與室溫一氧化碳氧化反應是不同。金承載於鈰錳複合擔體的CO選擇性氧化結果顯示添加錳可增進觸媒於80oC反應的活性與選擇性。
Bulk gold has been regarded as a poorly active catalyst. A theoretical calculation has explained the smooth surface of Au is noble in the dissociation adsorption of hydrogen. However, when Au is deposited as nanoparticles on metal oxides, it exhibits surprisingly high catalytic activity for CO oxidation at a temperature as low as 200K. Removal of CO in H2 stream is an important subject in fuel cell performance. The aim of this study was to investigate the effect of preparation on the characteristics of CeO2. In addition, preferential oxidation of CO in H2 stream (PROX) over gold supported on CeO2 and MnO2-CeO2 mixed oxide were investigated.
Several CeO2 supports were used in this study including NanoCeria from Degussa Company and a series of home-made CeO2 which were prepared by precipitation at constant pH using cerium nitrate and NH4OH as the starting materials. Several synthesis parameters, such as pH value (from 8 to 11) and heating temperature (from 120 to 400oC), have been varied. For the mixed oxide support, MnO2-CeO2, was prepared by impregnation method. Gold catalysts supported on CeO2 and MnO2-CeO2 were prepared by deposition-precipitation using HAuCl4 as the Au precursor. The effects of calcination temperature on the catalytic properties after loading gold were also studied.
The supported gold catalysts were characterized by powder X-ray diffraction (XRD), N2 sorption, transmission electron microscopy (TEM), and X-ray Photoelectron Spectroscopy (XPS). The results show that CeO2 support prepared at pH 10 had the highest surface area (104 m2/g). The crystallinity of CeO2 increased with an increase of calcination temperature. TEM images showed that the particle sizes of CeO2 were about 20 nm. The XRD results showed that gold metal had a particle size under detection limit, which was less than 4 nm. TEM images confirmed that the particle sizes of gold for all the catalysts were less than 4 nm. The method applied in this study leaded to a fairly uniform dispersion of gold nanoparticles with diameter less than 4 nm and narrow size distribution. XPS spectra showed that metallic and oxidized gold species coexisted within nano gold particle. For the effects of calcined temperature after loading gold, XPS study showed that more metallic gold species were present in gold nanoparticles calcined at 180oC.
Activities for CO oxidation on Au/CeO2 catalysts were measured using a fixed bed continuous flow reactor. Gold catalysts supported on NanoCeria from Degussa Company demonstrated the highest activity. For gold supported on home-made CeO2 catalyst, the CeO2 support prepared at pH value 10 and calcined at 400oC showed the highest activity. For the effects of calcination temperature after loading gold, the catalyst which calcined at 180oC after loading gold had the highest activity in CO oxidation than those calcined at 120oC.
In contrast, gold catalyst which calcined at 120oC after loading gold showed a higher activity in preferential oxidation of CO in H2 stream at the reaction temperature above 50oC than those calcined at 180oC. Furthermore, the gold catalyst supported on MnO2-CeO2 mix oxide showed higher CO conversion and selectivity to CO oxidation by adding MnO2 on CeO2. By regulating the preparation and pretreatment procedure and the compositions of Au/MnO2-CeO2 catalyst, we have developed a catalyst which had high CO conversion and high selectivity to CO oxidation in PROX reaction.
Table of Contents
Page
Table of Contents………………………………………………………………………I
List of Figures………………………………………………………………………..III
List of Tables………………………………………………………………………….V
Chapter 1. Introduction……………………………………………………..................1
Chapter 2. Literature review………...………………………………………………...3
2.1 Preparation method…………………………………………………………..3
2.2 Active state of Au……………………………………………………………7
2.3 Au-support interaction……………………………………………………….9
2.4 Applications in catalysis..................................................................................9
2.4.1 CO oxidation…………………………………………………………….9
2.4.2 VOC oxidation..........................................................................................9
2.4.3 water-gas shift reaction………………………………………………...10
2.4.4 Chemical processing…………………………………………………...10
2.4.5 Epoxidation of propylene………………………………………………10
2.5 CO oxidation………………………………………………………………..10
2.5.1 Particle size effect……………………………………………………...10
2.5.2 Support effect…………………………………………………………..13
2.5.3 Promoter………………………………………………………………..14
2.5.4 Reaction mechanism…………………………………………………...15
2.6 Selective CO oxidation in H2 stream……………………………………….16
Chapter 3. Experimental……………………………………………………………...20
3.1 Chemicals…………………………………………………………………...20
3.2. Catalyst preparation………………………………………………………..20
3.2.1 Preparation of support………………………………………………….20
3.2.2 Preparation of gold catalysts…………………………………………...20
3.3. Characterization…………………………………………………………....21
3.3.1 N2-sorption……………………………………………………..............21
3.3.2 XRD……………………………………………………………............21
3.3.3 TEM and TEM-EDS…………………………………………...............21
3.3.4 ESCA.......................................................................................................22
3.4 Reaction testing……………………………………………………………..22
3.4.1 CO oxidation………………………………………………...................22
3.4.2 Selective CO oxidation in H2 stream…………………….……………..22
Chapter 4. Gold catalysts on CO oxidation…………………………………………..27
4.1 Introduction…………………………………………………………………27
4.2 The role of CeO2 supports…………………………………..………………28
4.3 Effect of the particle size……………………………………………………40
4.4 Effect of calcination temperature of gold………………………...................48
4.5 Effect of addition of Mn…………………………………………………….58
4.6 Summary……………………………………………………………………62
Chapter 5. Gold catalysts on selective CO oxidation………………………………...63
5.1 Introduction…………………………………………………………………63
5.2 The role of CeO2 supports…………………………………………………..64
5.3 Effect of calcination temperature of gold………………………...................73
5.4 Effect of addition of Mn…………………………………………………….85
5.5 Summary……………………………………………………………………98
Chapter 6. Conclusion………………………………………………………………..99
Literature cited……………………………………………………………………...101
Literature Cited

Akita, T., Lu, P., Ichikawa, S., Tanaka, K., and Haruta, M., “Analytic TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures”, Surf. Interface Anal. 31 (2001) 73-78.

Ando, M., Kobayashi, T., Ijima, S., and Haruta, M., “Optical CO Sensitivity of Au-CuO Composite Film by Use of the Plasmon Adsorption Change”, Sensors and Actuators B 96 (2003) 589-595.

Andreeva, D., Idakiev, V., Tabakova, T., and Andreev, A., “Low-Temperature Water-Gas Shift Reaction over Au/ ά-Fe2O3”, J. Catal. 158 (1996) 354-355.

Andreeva, D., Idakiev, V., Tabakova, T., Ilieva, L., Falaras, P., Bourlinos, A., and Travlos, A., “Low-temperature water-gas shift reaction over Au/CeO2 catalysts”, Catal. Today 72 (2002) 51-57.

Avgouropoulos, G., Ioannides, T., Papadopoulou, C., Batista, J., Hocevar, S., and Matralis, H. K., “A comparative study of Pt/��-Al2O3, Au/��-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen”, Catal. Today, 75 (2002) 157-167.

Baiker, A, Kilo, M., Maciejewski, M., Menzi, S., Wokaun, A., in: Guczi, L., Salomosi, F., Tetenyi, P., Proceedings of the 10th International Congress on Catalysis, Budapest, 1992, part B, Elsevier, Amsterdam, (1993) 1257.

Bera, P., and Hegde, M. S., “Characterization and catalytic properties of combustion synthesized Au/CeO2 catalyst”, Catal. Lett. 79 (2002) 75-81.

Bethke, G.. K. and Kung, H. H., “Selective CO oxidation in a hydrogen-rich stream over Au/r-Al2O3 catalysts”, Appl. Catal. A: General 194-195 (2000) 43-53.

Boccuzzi, F., Chiorino, A., Tsubota, S., and Haruta, M., Catal .Lett. 29 (1994) 225.

Bond, G. C., and Thompson, D. T., Catal. Rev.-Sci Eng. 41 (1999) 319-388.

Bond, G. C., and Thompson, D. T., Gold Bull. 33 (2000) 41.

Bond, G.. C., “Gold: a relatively new catalyst”, Catal. Today 72 (2002) 5-9.

Cameron, D., Corti, C., Holliday, R., and Thompson, D., “Gold-based catalysts for hydrogen processing and fuel cell systems”, adapted from web site of world gold council, www.wgc.org. (2003).

Cant, N. W., Ossipoff, N. J., “Cobalt promotion of Au/TiO2 catalysts for the reaction of carbon monoxide with oxygen and nitrogen oxides”, Catal. Today 36 (1997) 125-133.

Carrettin, S., Concepcion, P., Corma, A., Nieto, J. M. L., Puntes, V. F., “Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude”, Angew. Chem. Int. Ed. 43 (2004) 2538-2540.

Centeno, M. A., Paulis, M., Montes, M., and Odriozola, J. A., “Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts”, Appl. Catal. A: General 234 (2002) 65.

Chen, H. I., and Chang, H. Y., “Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents”, Colloids Surf. A 242 (2004) 61-69.

Choudhary, T. V., Sivadinarayana, C., Chusuei, C. C., Datye, A. K., Fackler, J. P., Jr., and Goodman, D. W., “CO oxidation on Supported Nano-Au Catalysts Synthesized form [Au(PPh3)6](BF4)2”, J. Catal. 207 (2002) 247-255.

Cosandey, F., and Madey, T. E., Surf. Rev. Lett. 8 (2001) 73-93.

Costello, C. K., Kung, M. C., Oh, H. S., Wang, Y., and Kung, H. H., “Nature of the active site for CO oxidation on highly active Au/r-Al2O3”, Appl. Catal. A: General, 232 (2002) 159-168.

Cuenya, B. R., Baeck, S. H., Jaramillo, T. F., and Mcfarland, E. W., J. Am. Chem. Soc. 125 (2003) 12928.

Date, M., and Haruta, M., “Moisture Effect on CO Oxidation over Au/TiO2 Catalyst”, J. Catal. 201 (2001) 221-224.

Date, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., and Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catal. Today 72 (2002) 89-94.

Dekkers, M. A. P., Lippits, M. J., and Nieuwenhuys, B. E., Catal. Lett. 56 (1998) 195.
Dong, J. K., Jae, H. S., Hong, S. H, Noon, I. S., Korean J. Chem. Eng. 14 (1997) 486.

Epling, W. S., Hoflund, G. B., and Weaver, J. F., J. Phys. Chem. 100 (1996) 9929.

Fan, L., Ichikuni, N., Shimazu, S., and Uematsu, T., “Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation”, Appl. Catal. A: General 246 (2003) 87-95.

Freni, S., Calogero, G.., Cavallaro, S., “Hydrogen production from methane through catalytic partial oxidation reactions”, J. Power Sources 87 (2000) 28-38.

Fukushima, K., Takaoka, G. H., Matsuo, J., and Yamada, I., “Effects on CO oxidation activity of nano-scale Au islands and TiO2 support prepared by the ionized cluster beam method”, Jpn. J. Appl. Phys., Part 1 36 (1997) 813-818.

Gluhoi, A. C., Dekkers, M. A. P., and Nieuwenhuys, B. E., “Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: effect of the addition of various oxides”, J. Catal. 219 (2003) 197-205.

Grisel, R. J. H. and Nieuwenhuys, B. E., “Selective Oxidation of CO, over Supported Au Catalysts”, J. Catal. 199 (2001) 48-59.

Grisel, R. J. H., Westrstrate, C. J., Goossens, A., Craje, M. W. J., Van der Kraan, A. M., and Nieuwenhuys, B. E., “Oxodation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment”, Catal. Today 72 (2002) 123-132.

Grisel, R.J.H. and Nieuwenhuys, B.E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts”, Catal. Today 64 (2001) 69-81.

Grunwaldt, J.D., Maciejewski, M., Becker, O.S., Fabrizioli, P., and Baiker, A. “Comparative Study of Au/TiO2 and Au/ZrO2 Catalysts for Low-Temperature CO Oxidation”, J. Catal. 186 (1999) 458-469.

Gupts, N. M. and Tripathi, A. K., “Microcalorimetry, Adsorption, and Reaction Studies of CO, O2, and CO+O2 over Fe2O3, Au/Fe2O3, and Polycrystalline Gold Catalysts as a Function of Reduction Treatment”, J. Catal. 187 (1999) 343-347.

Hammer, B., and Norskov, J. K., “Why gold is the noblest of all the metals”, Nature 376 (1995) 238-239.

Haruta, M. and Date, M., “Advances in the catalysis of Au nanoparticles”, Appl. Catal. A: General 222 (2001) 427-437.

Haruta, M., “Nanoparticulate Gold Catalyst for Low-Temperature CO oxidation”, J. New. Electrochem. System 7 (2004) 163-172.

Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catal. Today 36 (1997) 153-166.

Haruta, M., Catal. Surv. Jpn. 1 (1997) 61.

Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., “Low-Temperature Oxidation of CO over Gold Supported on TiO2, ά-Fe2O3, and Co3O4”, J. Catal. 144 (1993) 175-192.

Haruta, M., Ueda, A., Tsubota, S., and Torres-Sanchez, R. M., “Low-temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts”, Catal. Today 29 (1996) 443-447.

Haruta, M., Yamada, N., Kobayashi, T., and Iijima, S., J. Catal. 115 (1989) 301.

Hoflund, G. B., Gardner, S. D., Schryer, D. R., Upchurch, B. T., Kielin, E. J., “Au/MnOx catalystic performance characteristics for low-temperature carbon monoxide oxidation”, Appl. Catal. B: Environmental 6 (1995) 117-126.

Holgado, J. P., and Munuera, G., XPS/TPR study of the reducibility of M/CeO2 catalysts (M=Pt, Rh): Does junction effect theory apply? Elsevier Science, Brussels, Belgium 1995.

Hutchings, G. J., “Gold catalysis in chemical processing”, Catal. Today 72 (2002) 11-17.

Hutchings, G. J., Mirzaei, A. A., Joyner, R. W., “Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation”, Appl. Catal. 166 (1998) 143-152.

Iizuka, Y., Fujiki, H., Yamauchi, N., Chijiiwa, T., Arai, S., Tsubota, S., and Haruta, M., “Adsorption of CO on gold supported on TiO2”, Catal. Today 36 (1997) 115-123.

Jozsef, L., Margitfalvi, M., Hegedus, A., Szegedi, and Sajo, I., “Modification of Au/MgO catalysts used in low temperature CO oxidation with Mn and Fe”, Appl. Catal. A: General 272 (2004) 87-97.

Kahlich, M. J., Gasteiger, H. A., Behm, R. J., ”Kinetics of the Selective CO Oxidation in H2-Rich Gas on Pt/Al2O3”, J. Catal. 171 (1997) 93-105.

Kobayashi, T., Haruta, M., Tsubota, S., Sano, H., “Thin films of supported gold catalysts for CO detection”, Sens. Actuators 131 (1990) 222-225.

Kozlov, A.I., Kozlova, A.P., Liu, H., and Iwasawa, Y., “A new approach to active supported Au catalysts”, Appl. Catal. A: General 182 (1999) 9-28.

Lee, C., Yoom, H. K., Moon, S. H., Yoom, K. J., Korean J. Chem. Eng. 15 (1998) 590-595.

Lee, S. J. and Gavriilidis, A., “Au catalysts supported on anodized aluminum for low-temperature CO oxidation”, Catal. Comm. 3 (2002) 425-428.

Lin, J. N., Chen, J. H., Hsiao, C. Y., Kang, Y. M., and Wan B. Z., “Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO oxidation”, Appl. Catal. B: Environmental 36 (2002) 19-29.

Lopez, N., Norskov, J. K., Janssens, T. V. W., Ccalsson, A., Puig-Molina, A., Clausen, B. S., and Grunwaldt, J. D., “The adhesion and shape of nanosized Au particle in a Au/TiO2 catalyst”, J. Catal. 225 (2004) 86-94.

Luengnaruemitchai, A., Osuwan, S., and Gulari, E., “Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts”, Catal. Commun. 4 (2003) 215-221.

Mallick, K. and Scurrell, M. S., “CO oxidation over gold nanoparticles supported on TiO2 and TiO2-ZnO: catalytic activity effects due to surface modification of TiO2 with ZnO”, Appl. Catal. A: General 253 (2003) 527-536.

Margiftfalvi, J.L., Fasi, A., Hegedus, M., Lonyi, F., Gobolos, S., Bogdanchikova, N., “Ag/MgO catalysts modified with ascorbic acid for low temperature CO oxidation”, Catal. Today 72 (2002) 157-169.

Minico, S., Scire, S., Crisafulli, C., and Galvagno, S., “Influence of catalyst pretreatments on volatile organic compounds oxidation over gold/iron oxide”, Appl. Catal. B: Environmental 34 (2001) 277-285.

Mogensen, M., Sammes, N. M., and Tompsett, G. A., ”Physical, chemical and electrochemical properties of pure and doped ceria”, Solid State Ionics 129 (2000) 63-94.

Neri, G.., Visco, A. M., Galvagno, S., Donato, A., and Panzalorto, M., “Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization”, Thermochimica Acta. 329 (1999) 39-46.

Okumura, M., “Report of the Research Achievement of Interdisciplinary Basic Research Scetion: No. 393”, Osaka National research Institute (1999) 6.

Okumura, M., Tsubota, S., and Haruta, M., “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and H2”, J. Mol. Catal. A: Chemical 199 (2003) 73-84.

Park, E. D., and Lee, J. S., “Effects of Pretreatment Conditions on CO Oxidation over Supported Au Catalysts”, J. Catal. 186 (1999) 1-11.

Patsalas, P., Logothetidis, S., Sygellou, L., and Kennou, S., Phys. Rev. B: Condens. Matter 68 (2003) 035104.

Pino, L., Vita, A., Cordaro, M., Recupero, V., and Hegde, M. S., “A comparative study of Pt/CeO2 catalysts for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles”, Appl. Catal. A: General 243 (2003) 135-146.

Qi, C., Akita, T., Okumura, M., Kuraoka, K., and Haruta, M., “Effect of surface chemical properties and texture of mesoporous titanosilicate on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature”, Appl. Catal. A; General 253 (2003) 75-89.

Romeo, M., Bak, K., Fallah, J. E., Normand, F. L., and Hilaire, L., “XPS study of the reduction of cerium dioxide”, Surf. Interface Anal. 20 (1993) 508-512.

Rosd, M.T. S., Atsushi, U., Koji, T., and Masatake, H., “Selective Oxidation of CO in Hydrogen over Gold Supported on Manganese Oxides” J. Catal., 168 (1997) 125-127
.
Ruth, K., Hayes, M., Burch, R., Tsubota, S., and Haruta, M., “The effects of SO2 on the oxidation of CO and propane non supported Pt and Au catalysts”, Appl. Catal. B: Environmental 24 (2000) 133-138.

Setiabudi, A., Chen, J. L., Mul, G., Makkee, M., and Moulijn, J. A., “CeO2 catalysed soot oxidation: The role of active oxygen to accelerate the oxidation conversion”, Appl. Catal. B: Environmental 51 (2004) 9-19.

Soares, J. M. C., Morrall, P., Crossley, A., Harris, P., and Bowker, M., “Catalytic and noncatalytic CO oxidation on Au/TiO2 catalysts”, J. Catal. 219 (2003) 17-24.

Su, Y. S., Lee, M. Y., and Lin, S. D., Catal. Lett, 57 (1999) 49.

Tabakova, T., Boccuzzi, F., Manzoli, M., Sobczak, J. W., Idakiev, V., and Andreeva, D., “Effect of synthesis procedure on the low-temperature WGS activity of Au/ceria catalysts”, Appl. Catal. B: Environmental 49 (2004) 73-81.

Tabakova, T., Idakiev, V., Andreeva, D., and Mitov, I., “Influence of the microscopic properties of the support on the catalytic activity of Au/ZnO, Au/ZrO2, Au/Fe2O3, Au/Fe2O3-ZnO, Au/Fe2O3-ZrO2 catalysts for the WGS reaction”, Appl. Catal. A: General 202 (2000) 91-97.

Takaoka, G.. H., Hamano, T., Fukushima, K., Matsuo, J., and Yamada, I., “Preparation and catalytic activity of nano-scale Au islands supported on TiO2”, Nuclear Instru. Method. Phys. Research B 121 (1997) 503-506.

Tang, X. L., Zhang, B. C., Li, Y., Xu, Y. D., Xin, Q., and Shen, W. J., Catal. Today 191 (2004) 93.
Valden, M., Lai, X., Goodmam, D. W., “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties”, Science 281 (1998) 1647-1650.

Visco, A. M., Neri, F., Neri, G., Donato, A., Milone, C., and Galvagno, S., Phys. Chem. Chem. Phys. 1 (1999) 2869.

Wang, G.. Y., Zhang, W. X., Lian, H. L., Jiang, D. Z., and Wu, T. H., “Effect of calcinations temperatures and precipitants on the catalytic performance of Au/ZnO catalysts for CO oxidation at ambient temperature and in humid circumstances”, Appl. Catal. A: General, 239 9 (2003) 1-10.

Wolf A., and Schuth, F., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Appl. Catal. A: General, 226 (2002) 1-13.

Yee, A., Morrison, S. J., and Idriss, H., “Reactions of ethanol over M/CeO2 catalysts. Evidence of carbon-carbon bond dissociation at low temperatures over Rh/CeO2”, Catal. Today 63 (2000) 327-335.

Yee, A., Morrison, S. J., and Idriss, H., “A Study of the Reactions of Ethanol on CeO2 and Pd/CeO2 by Steady State Reactions, Temperature Programmed
Desorption, and In SituFT-IR”, J. Catal. 186 (1999) 279-295.

Zanella, R., S. Giorgio, C. R. Henry, C. Louis, “Alternative methods for the preparation of gold nanoparticles supported on TiO2”, J. Phys. Chem. B, 103 (2002) 7634-7642.

Zhang, J., Wang, Y., Chen, B., Li, C., Wu, D., and Wang, X., “Selective oxidation of CO in hydrogen rich gas over platinum-gold catalyst supported on zinc oxide for potential application in fuel cell”, Energy Conversion and Management, 44 (2003) 1805.

Zhang, F., Chan, S.-W., Spanier, J. E., Apak, E., Jin, Q., Robinson, R. D., and Herman, I. P., “Cerium oxide nanoparticles: Size-selective formation and structure analysis”, Appl. Phys. Lett. 80 (2002) 127-129.

Zhang, F., Jin, Q., and Chan, S. W., “Ceria nanoparticles: Size, size distribution, and shape”, J. Appl. Phys. 95 (2004) 4319-4326.
Zhang, F., Wang, P., Koberstein, J., Khalid, S., and Chan, S. W., “Cerium oxidation state in ceria nanoparticles studied with X-ray photoelectron spectroscopy and absorption near edge spectroscopy”, Surf. Sci. 563 (2004) 74-82.

Zheng, S. and Gao, L., “Synthesis and characterization of Pt, Au or Pd clusters deposited titania-modified mesoporous silicate MCM-41”, mater. Chem. Phys. 78 (2002) 512.

Zhou, X. D., Huebner, W., and Anderson, H. U., “Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2”, Appl. Phys. Lett. 80 (2002) 3814-3816.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔