跳到主要內容

臺灣博碩士論文加值系統

(3.80.5.103) 您好!臺灣時間:2021/06/23 10:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭安均
研究生(外文):An-chun Xiao
論文名稱:硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
論文名稱(外文):The effect of boron and carbon contents on GFA, thermal properties, and cutting ability of Fe-base bulk amorphous steel (BAS)
指導教授:鄭憲清
指導教授(外文):Shian-ching Jang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:111
中文關鍵詞:鐵基非晶質合金玻璃形成能力生醫器械
外文關鍵詞:Bulk metallic glassesGlass forming abilityBlade Sharpness Index
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鐵基非晶質合金又稱於非晶質鋼材(Bulk Amorphous Steel, BAS),具有優良玻璃形成能力、高強度、高硬度、耐磨耗以及良好耐腐蝕特性,相較於其他金屬玻璃,如鋯基、鈦基等,鐵基非晶質合金擁有更高機械強度且低製備成本,適合應用於生醫工程材料,如手術刀及鑽頭等醫療器械。
  本研究以Fe-Cr-Mo-C-B-Y-Co為主要成分,配製出不同原子百分比的合金比較其熱性質,以真空吸鑄法製成功製做出2~4 mm的非晶質棒材,其中Fe41Cr15Mo14C12B9Y2Co7玻璃形成能力高達γ=0.399、γm=0.683,過冷液相區範圍擁有81K,適合用於熱壓工程改善品質及熱塑成形。合金硬度約1200 Hv,經由壓縮試驗其破裂強度為3200 MPa。藉由直流電化學動態極化法於Hank’s 緩衝液中研究其腐蝕行為,相較於304及316不鏽鋼,鐵非金質合金具較穩定鈍化層(Epit -Ecorr=1.356 V),可有效避免表面產生劇烈腐蝕。由鐵基非晶質手合金製作之術刀及鐵基鍍膜手術刀具有比商用手術刀更小之表面粗糙度及更好的銳利度,經切割測試50 cm後,鐵基非晶質手術刀、鐵基非晶質鍍膜手術刀、商用手術刀BSI分別增加為0.38、0.49、0.59,由此驗證出鐵基金屬玻璃手術刀耐磨耗能力佳,經多次切割後仍保有優良的切割能力。

A prominent Fe-based bulk amorphous steel (BAS) alloy which present high glass forming ability (GFA), good corrosion resistance, superior mechanical properties and relative lower cost. The Fe41Cr15Co7Mo14C21-xBxY2 (x=5-10) BAS rods with a diameter of 2-4 mm, can be fabricate by suction casting method. The highest GFA value can be obtained by adjusting the ration of boron/carbon and reaches to the value of γ=0.399, γm=0.683 at the alloy composition of Fe41Ce15Co7Mo14C12B9Y2. Meanwhile, this alloy also presents very large supercooled liquid region up to 81 K which indicates that it also can be fabricated into the micro-surgery tool by thermoplastic forming. In addition, the hardness of the Fe-based BAS alloy exhibits saturated around 1200 Hv.
The anodic polarization measurement of Fe-based BAS exhibits a higher corrosion resistance than the 304SS and 316SS in Hank’s balanced salt solution. Results of sharpness test reveal that BAS blade exhibits much lower surface roughness and higher wear resistance. The BSI value of Fe-based BAS blade, Fe-based MGTF blade and commercial blade increase from 0.26 to 0.38, 0.29 to 0.49 and 0.31to 0.59 after cutting length 50 cm, respectively.

中文摘要 I
英文摘要 Abstract II
誌謝 III
目錄 VII
表目錄 XI
圖目錄 XII
第一章 緒論 1
第二章 理論基礎 7
2-1 非晶質合金發展 7
2-2 實驗歸納法 9
2-3 非晶質合金製備 10
2-4 非晶質合金熱性質(Thermal properties) 13
2-4-1玻璃轉化溫度,Tg 13
2-4-2 結晶溫度,Tx 13
2-4-3 液化溫度,Tl 14
2-4-4 過冷液相區間,∆T 14
2-4-5 玻璃形成能力(Glass forming ability, GFA) 14
2-4-5-1 簡化玻璃轉化溫度,Trg 15
2-4-5-2 γ值和γm值 15
2-5 電化學測試法(Electrochemical tests) 16
2-6刀鋒銳利指數 (Blade Sharpness Index,BSI) 17
2-6-1 計算切割能量,Ei 18
第三章 實驗步驟與方法 26
3-1 實驗目的 26
3-2 合金材料製備 27
3-2-1 合金鑄錠配製 27
3-2-2塊狀板材製作 28
3-2-3 合金靶材製作 28
3-2-4 塊狀基材手術刀製作 29
3-2-5靶材製作及非晶質薄膜濺鍍 29
3-3 熱性質分析 30
3-3-1 試片製作處理 30
3-3-2熱示差掃描分析儀(DSC) 30
3-4 微結構分析 31
3-4-1 X光繞射儀與低掠角X光繞射儀分析(XRD and GIXRD) 31
3-4-2 掃描式電子顯微鏡觀察(SEM) 32
3-4-3 電子微探儀(EPMA) 32
3-4-4 原子力顯微鏡(AFM) 33
3-5 電化學-腐蝕性質分析 33
3-5-1 動態極化法 34
3-6 機械性質分析 34
3-6-1 硬度量測分析 34
3-6-2 刮痕測試 35
3-6-3 奈米壓痕硬度量測 35
3-6-4 銳利度測試分析 36
第四章 實驗結果與討論 50
4-1 成分分析 50
4-2 晶體構分析 51
4-3 熱性質分析 51
4-3-1 非合溫熱性質分析 51
4-3-2 非恆溫分析法 – Kissinger plot 53
4-3 機械性質分析 54
4-3-1 硬度測試 54
4-3-2 薄膜附著力分析 54
4-3-3 薄膜硬度分析 55
4-4 表面粗糙度分析 56
4-4-1 原子力顯微鏡表面分析(AFM) 56
4-4-2 電子顯微鏡刀刃表面分析 (SEM, Surface profile) 57
4-5 抗蝕能力分析 57
4-5-1動態極化法 57
4-5-2 腐蝕表面觀察 58
4-6 刀鋒表面分析 59
4-7 刀具銳利度磨耗分析 60
第五章 結論 89
第六章 參考文獻 90

[1] Z. P. Lu, C. T. Liu, “Role of minor alloying additions in formation of bulk metallic glasses: A Review ”, J. Mater. Sci., Vol. 39, p. 3965-3974, 2004.
[2] Wei Hua Wang, “Roles of minor additions in formation and properties of bulk metallic glasses”, Progress in Material Science, Vol. 52, p. 540-596, 2007.
[3] Z.P. Lu, C.T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, Vol. 50, p. 3501-3512, 2002.
[4] Z.P. Lu, C.T. Liu, “A new approach to understanding and measuring glass formation in bulk amorphous materials”, Intermetallics, Vol. 12, p. 1035-1043, 2004.
[5] X. H. Du, J. C. Huang, C. T. Liu, Z. P. Lu, “New criterion of glass forming ability for bulk metallic glasses”, J. Appl. Phys., Vol. 101, 2007.
[6] Sheng Guo, Z.P. Lu, C.T. Liu, “Identify the best glass forming ability criterion”, Intermetallics, Vol. 18, pp.883-888, 2010.
[7] A. Brenner, D. E. Couch, E. K. Williams, “Electro deposition of alloys”, J. Res. Nat. Bur. Stand., Vol.44, p.109, 1950.
[8] W. Klement, R. H. Willens and P. Duwez, “Non-crystalline structure in solidified gold-silicon alloys”, Nature, Vol.187, p.869-870, 1960.
[9] H. S. Chen, C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol.41, p.1237, 1970.
[10] Liebermann H., Graham C., “Production of amorphous alloy ribbon and effect of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, Vol. 12, No.6, p.921-923,1976.
[11] 吳學陞著作,“新興材料-塊狀非晶質金屬材料”,工業材料,149期,p.154-159,1999年。
[12] C. C. Loch, O. B. Cavin, C. G. Mckamey, J. O. Scarbrough, “Preparation of amorphous Ni60Nb40 by mechanical alloying”, Appl. Phys. Lett., Vol.43, p.1017-1019, 1983.
[13] A. Inoue and K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, p.7, 1995.
[14] A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Mater. Sci. Eng., Vol. 226-228, p.357, 1997.
[15] A. Inoue, A. Kato, T. Zhang, S. G. Kim, T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Mater. Trans. JIM, Vol. 32, p. 609, 1991.
[16] A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, “Mg-Cu-Y Bulk Amorphous Alloy with High Tensile Strength Produced by a High-Pressure Die Casting Method”, Mater. Trans. JIM, Vol.33, p.937, 1992.
[17] A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties”, Materials Science and Engineering, Vol.226-228, p.357-363, 1997.
[18] A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, Vol.36, p.866-875, 1995.
[19] A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, Vol.269-272, p.855-864, 1998.
[20] A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, Vol.29, p.1779-1793, 1998.
[21] R. W. Cahn, P. Hassen, E. J. Kramer(ed), Materials Science and Technology, Vol.9, 1991.
[22] G. N. Jackson, “R.F. sputtering”, Thin Solid Film, Vol. 5, p.209, 1907.
[23] K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, 1969.
[24] B. Li, N. Nordstrom , E. J. Lavernia, “Spray forming of zircaloy-4”, Mater. Sci. Eng., Vol.237, p.207, 1997.
[25] R. Liu, J. Li, K. Dong, C. Zheng, H. Liu, “Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes”, Mater. Sci. Eng., Vol.94, p.141, 2002.
[26] P. S. Grant, “Spray forming”, Prog. Mater. Sci., Vol.39, p.497, 1995.
[27] A. Inoue, B.L. Shen, C.T. Chang, “Fe- and Co-based bulk glassy alloys with ultrahigh strength of over 4000 MPa”, Intermetallics, Vol. 14, p. 936–944, 2006.
[28] Chuntao Changa, Baolong Shen, Akihisa Inoue, “Synthesis of bulk glassy alloys in the (Fe,Co,Ni)–B–Si–Nb system”, Materials Science and Engineering,Vol. 449–451, p. 239–242, 2007.
[29] K.Q. Qiua, J. Panga, Y.L. Rena, H.B. Zhanga, C.L. Mab, T. Zhangb, “Fe-based bulk metallic glasses with a larger supercooled liquid region and high ductility”, Materials Science and Engineering, Vol. 498, p. 464-467, 2008.
[30] S.F. Guo, L. Liu, N. Lia, Y. Li, “Fe-based bulk metallic glass matrix composite with large plasticity”, Scripta Materialia , Vol. 62, p.329-332, 2010.
[31] Zhang Tao,Yang Qin, Ji Yun Fei, LI Ran, PANG Shu Jie, WANG JianFeng, X.U. Tao, “Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa”, Chinese Science Bulletin, Vol. 56, p. 3972-3977, 2011.
[32] X.J. Gu and S. Joseph Poon, “Mechanical properties of iron-based bulk metallic glasses”, J. Mater. Res., Vol. 22, No. 2, Feb 2007.
[33] Jun Shen, Qingjun Chen, Jianfei Sun, Hongbo Fan, and Gang Wang, “Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy” Applied physics letters, vol.86, 2005.
[34] S.J. Pang, T. Zhang, K. Asami, A. Inoue, “Bulk glassy Fe–Cr–Mo–C–B alloys with high corrosion resistance”, Corrosion Science, Vol. 44, p. 1847-1856, 2002.
[35] Tanya Aycan Baser, Marcello Baricco, “Fe-based bulk metallic glasses with Y addition”, Journal of Alloys and Compounds, Vol. 434–435, p.176-179, 2007.
[36] Sandip P. Harimkar , Sameer R. Paital, Ashish Singh, Robert Aalund, Narendra B. Dahotre, “Microstructure and properties of spark plasma sintered Fe-Cr-Mo-Y-B-C bulk metallic glass”, Journal of Non-Crystalline Solids, Vol. 355, p. 2179-2182, 2009.
[37] Akihiko Hirataa, Yoshihiko Hirotsub, Kenji Amiyac, Akihisa Inoue, “Quasicrystal-like structure and its crystalline approximant in an Fe48Cr15Mo14C15B6Tm2 bulk metallic glass”, Journal of Alloys and Compounds, Vol. 504S, p. S186-S189, 2010.
[38] R.D. Ma, H.F. Zhang, H.S. Yu, Z.Q. Hu, “The effect of Al substitution on thermal and mechanical properties of Fe-based bulk metallic glass”, Journal of Alloys and Compounds, Vol. 454, 370-373, 2008.
[39] F. Gostin, U. Siegel, C. Mickel, S. Baunack, A. Gebert, and L. Schultz, “Corrosion behavior of the bulk glassy (Fe44.3Cr5Co5Mo12.8Mn11.2C15.8 B5.9)98.5Y1.5 alloy”, J. Mater. Res., Vol. 24, No. 4, Apr 2009.
[40] P.F. Gostin, A. Gebert, L. Schultz, “Comparison of the corrosion of bulk amorphous steel with conventional steel”, Corrosion Science, Vol. 52, p.273-281, 2010.
[41] J. Jayaraj,1, K.B. Kima, H.S. Ahnb, E. Fleury, “Corrosion mechanism of N-containing Fe–Cr–Mo–Y–C–B bulk amorphous alloys in highly concentrated HCl solution”, Materials Science and Engineering, Vol. 449-451, p. 517–520, 2007.
[42] H. Habazaki, A. Kawashima, K. Asam, K. Hashimoto, “The corrosion behavior of amorphous Fe-Cr-Mo-P-C and Fe-Cr-W-P-C alloys in 6M HCl solution”, Corrosion Science, Vol. 33, No. 2, pp. 225-236, 1992.
[43] C.T. McCarthy, A. Ni Annaidh, M.D. Gilchrist, “On the sharpness of straight edge blades in cutting soft solids: Part II - Analysis of blade geometry”, Engineering Fracture Mechanics , Vol. 77, p.437-345, 2010.
[44] C.T. McCarthy , M. Hussey, M.D. Gilchrist, “On the sharpness of straight edge blades in cutting soft solids: Part I - indentation experiments”, Engineering Fracture Mechanics , Vol. 74, p. 2205-2224, 2007.
[45] C.W. Chu, Jason S.C. Jang a, S.M. Chiu, J.P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films ,Vol. 517, p.4930-4933,2009.
[46] Xu Y. K., Ma H., Xu J., ” Mg-based bulk metallic glass composites with plasticity and gigapascal strength ”, Acta Materialla, Vol. 53 , p. 1857-1866, 2005.
[47] Inoue A., Zhang W., Zhang T , “Cu-based bulk glassy alloys with high tensile strength of over 2000 MPa ”, Journal of Non-Crystalline Solids, Vol. 304, p. 200-209 , 2002.
[48] Inoue A., Shen B. L., Koshiba H., ” Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys ”, Vol. 52 , p. 1631-1637, 2004.
[49] Y.B. Wang, H.F. Li, Y. Cheng, S.C. Wei, Y.F. Zheng, “Corrosion performances of a Nickel-free Fe-based bulk metallic glass in simulated body fluids”, Electrochemistry Communications , Vol. 11, 2187-2190, 2009.
[50] X. H. Du, C. Haung, C. T. Liu and Z. P. Liu, “New Criterion of Glass Forming Ability for Bulk Metallic Glasses”, J. Appl. Phys., Vol.101, p.88-108, 2007.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top