跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 13:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍瑋宣
研究生(外文):Wei-hsuan Lan
論文名稱:以水熱法製備水系鈉離子電池NaTi2(PO4)3負極材料
論文名稱(外文):The sodium ion battery negative material NaTi2(PO4)3 prepared by hydrothermal method to apply in aqueous systems
指導教授:林景崎
指導教授(外文):Jing-chie Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:139
中文關鍵詞:水熱法磷酸鈉鈦負極鈉離子電池鈉超離子導體
外文關鍵詞:HydrothermalNaTi2(PO4)3anodesodium ion batteryNASICON
相關次數:
  • 被引用被引用:1
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究以水熱法合成鈉超離子導體(NASICON)-磷酸鈉鈦,藉改變合成參數,如反應體積、反應時間、前驅物濃度及界面活性劑濃度,可獲得奈米顆粒;並添加不同比重之碳源進行碳包覆,增進其導電性,以利後續電池性能量測。經X光繞射儀(XRD)分析得知: 水熱法合成可獲得結晶性良好之磷酸鈉鈦;掃描式電子顯微鏡(SEM)觀察: 磷酸鈉鈦粉末之平均粒徑範圍約為100 ~ 500 nm。經碳包覆後,由拉曼(Ramam)光譜分析偵測出碳特徵訊號、熱重分析(TGA)得知包覆後碳含量依碳源添加量不同約3 wt%、6wt%,穿透式電子顯微鏡(TEM)觀察可確認碳包覆及其形貌。先後以三極式電化學系統量測循環伏安曲線、二級式鈕扣電池量測鈉離子電池之性能。最佳合成參數及碳包覆含量之樣品其於不同充放電速率(0.2、0.5、1、2、5C)下展現出優異電容量(121、114、110、102、67mAh/g)、庫倫效率除首圈外,皆高達99%以上、放電電容量維持率亦維持在95%以上;經200次充放電循環測試後,仍保持約82%之放電電容量,且由電化學交流阻抗分析表明,阻值無明顯上升,顯示以水熱法合成之鈉超離子導體(NASICON)-磷酸鈉鈦在作為水系鈉離子電池負極材料極具潛力。
Nano particle of sodium titanium phosphate belonging to sodium super-ionic conductor (NASICON)-type were successfully prepared by hydrothermal method under different synthetic parameters. With appropriate carbon-coating can improve material conductivity thus possibly suitable for making negative electrodes of sodium-ion batteries. From X-ray diffraction (XRD), which results revealed well crystalline structure of NaTi2(PO4)3 by hydrothermal method. Examination by field-emission scanning electron microscope (FE-SEM), the powders indicated their particle size in the range from 100 nm to 500 nm depending upon the experimental conditions. After coating by carbon, Raman spectroscopy demonstrated the D-band and G-band of carbon. The result of thermal gravimetric analysis (TGA) displayed that the carbon content was about 3wt%, 6wt% depending upon content of carbon source. The presence of carbon coating could be directly observed through by transmission electron microscope. Standard three-electrode cell was employed to conduct the cyclic voltammetry; two-electrode system via a coin cell was carried out for the test of battery performance, respectively. The optimal results revealed that C-coated nanoparticle NaTi2(PO4)3/C exhibited excellent electrochemical performance with high specific capacities (121, 114, 110, 102, 67mAh/g), high coulomb efficiency (99%) except first cycle and well discharge capacity retention (95%) at different charge/discharge rate (0.2, 0.5, 1, 2, 5C). A delivery of ~82% discharge capacity retention after 200 cycles and no obvious fading for impedance indicated that sodium titanium phosphate nano powders prepared in this work provided a potential material to prepare the anode used in aqueous sodium ion battery.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 x
圖目錄 xi
一、緒論 1
1-1前言 1
1-2 鈉離子電池發展背景 3
1-3鈉離子電池基本工作原理 4
1-4研究動機與目的 5
二、文獻回顧 8
2-1負極材料種類 8
2-1-1 碳材 8
2-1-2 金屬化合物 10
2-1-3 合金 13
2-2磷酸鈉鈦介紹 14
2-2-1 製程方法 14
2-2-2 電極材料應用 15
2-3奈米化 17
2-4界面活性劑 19
2-4-1界面活性劑之性質及種類 20
2-4-2 P123非離子型界面活性劑 21
三、研究方法 24
3-1實驗規劃 24
3-2實驗藥品 24
3-3 NaTi2(PO4)3合成條件 25
3-4實驗步驟 26
3-4-1前驅物溶液調配 26
3-4-2材料合成 27
3-4-3反應後產物洗淨、烘乾 27
3-4-4界面活性劑去除 27
3-4-5磷酸鈉鈦之碳包覆 28
3-4-6電極製備 28
3-5 材料鑑定分析 28
3-5-1場發射掃描式電子顯微鏡 28
3-5-2 X光粉末繞射儀 29
3-5-3高解析掃描穿透式電子顯微鏡 30
3-5-4拉曼光譜分析 31
3-5-5同步熱重分析儀 32
3-6 材料電化學分析 32
3-6-1量測系統 32
3-6-2循環伏安法 32
3-6-3充放電速率測試材料電化學性質 33
3-6-4充放電壽命 34
3-6-5電化學阻抗分析 34
四、結果 36
4-1材料合成 37
4-1-1不同水熱反應體積影響 37
4-1-1-1 XRD繞射晶體結構分析 38
4-1-1-2 FE-SEM表面形貌及粒徑大小觀察 38
4-1-2不同水熱反應時間影響 39
4-1-2-1 XRD繞射晶體結構分析 40
4-1-2-2 FE-SEM表面形貌及粒徑大小觀察 40
4-1-3不同前驅物濃度影響 41
4-1-3-1 XRD繞射晶體結構分析 42
4-1-3-2 FE- SEM表面形貌及粒徑大小觀察 42
4-1-4不同界面活性劑濃度影響 43
4-1-4-1 XRD繞射晶體結構分析 44
4-1-4-2 FE-SEM表面形貌及粒徑大小觀察 44
4-2碳包覆鑑定 45
4-2-1 Raman光譜分析 46
4-2-2 TGA熱重分析 47
4-2-3 TEM穿透式電子顯微鏡 47
4-2-3-1相鑑定 47
4-2-3-2晶粒形貌觀察 48
4-2-3-3碳包覆形貌觀察 48
4-3電化學性質量測 49
4-3-1循環伏安法 49
4-3-2表面形貌及粒徑大小對電池性能之影響 49
4-3-2-1放電電壓對電容量曲線圖 49
4-3-2-2充放電可逆性 50
4-3-2-3放電電容量維持率與充放電庫倫效率 51
4-3-3碳包覆含量對電池性能之影響 51
4-3-3-1放電電壓對電容量曲線圖 51
4-3-3-2循環壽命測試 52
4-3-3-3電化學交流阻抗分析 53
五、討論 54
5-1材料合成 54
5-1-1不同水熱反應體積影響 54
5-1-1-1 XRD繞射晶體結構分析 54
5-1-1-2 FE-SEM表面形貌及粒徑大小觀察 54
5-1-2 不同水熱反應時間影響 55
5-1-2-1 XRD繞射晶體結構分析 55
5-1-2-2 FE-SEM表面形貌及粒徑大小觀察 56
5-1-3 不同前驅物濃度影響 57
5-1-3-1 XRD繞射晶體結構分析 57
5-1-3-2 FE-SEM表面形貌及粒徑大小觀察 58
5-1-4 不同界面活性劑濃度影響 58
5-1-4-1 XRD繞射晶體結構分析 58
5-1-4-2 FE-SEM表面形貌及粒徑大小觀察 59
5-2碳包覆鑑定 61
5-2-1 Raman光譜分析 61
5-2-2 TGA熱重分析 61
5-2-3 TEM穿透式電子顯微鏡 62
5-2-3-1相鑑定 62
5-2-3-2晶粒形貌觀察 63
5-3電化學性質量測 64
5-3-1循環伏安法 64
5-3-2表面形貌及粒徑大小對電池性能之影響 64
5-3-2-1放電電壓對電容量曲線圖 64
5-3-2-2充放電可逆性 66
5-3-2-3放電電容量維持率與充放電庫倫效率 67
5-3-3碳包覆含量對電池性能之影響 67
5-3-3-1放電電壓對電容量曲線圖 67
5-3-3-2循環壽命測試 68
5-3-3-3電化學交流阻抗分析 70
六、結論 72
七、未來展望 75
八、參考文獻 76

[1] M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Advanced Functional Materials. 23, 947–958 (2013).
[2] V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. C. G. T. Rojo, Energy Environmental Science. 5, 5884 (2012).
[3] H. X. Yang, J. F. Qian, Journal of Inorganic Materials. 11, 1165-07 (2013).
[4] W. Li, J. R. Dahn, Science. 264(5162), 1115−1118 (1994).
[5] S. W. Kim, D. H. Seo, X. Ma, G. Ceder, K. Kang, Advance Energy Materials. 2, 710–721 (2012).
[6] Z. Li, D. Young, K. Xiang, W. C. Carter, Y.M. Chiang. Advanced Energy Materials. (2012).
[7] C. Delmas, A. Nadiri, J. L. Soubeyroux, Solid State Ion. 491, 28–30 (1988).
[8] S. I. Park, I. Gocheva, S. Okada, J. I. Yamaki, Journal of Electrochemical Society. 158, A1067-A1070 (2011).
[9] C. Delmas, F. Cherkaoui, A. Nadiri, P. Hagenmuller, Materials Research Bulletin. 22, 631 (1987).
[10] R. C. Asher, Journal of Inorganic Nuclear Chemistry. 10, 238 (1959).
[11] P. Ge, M. Fouletier, Solid State Ionics. 30, 1172(1988).
[12] D. A. Stevens, J. R. Dahn, Journal of Electrochemical Society. 148, A803 (2001).
[13] M. M. Doeff, Y. Ma, S. J. Visco, L. C. D. Jonghe, Journal of Electrochemical Society. 140, L169 (1993).
[14] R. Alcantara, J. M. J. Mateos, J. L. Tirado, Electrochemical Society. 149, A201 (2002).
[15] E. Zhecheva, R. Stoyanova, J. M. Jiménez-Mateos, R. Alcántara,
P. Lavela, J. L. Tirado, Carbon. 40, 2301 (2002).
[16] R. Alcántara, J. M. Jiménez-Mateos, P. Lavela, J. L. Tirado, Electrochemical Communication. 3, 639 (2001).
[17] P. Thomas, J. Ghanbaja, D. Billaud, Electrochemical Acta. 45, 423 (1999).
[18] M. Dubois, D. Billaud, Electrochemical Acta. 47, 4459 (2002).
[19] M. Dubois, A. Naji, D. Billaud, Electrochemical Acta. 46, 4301 (2001).
[20] R. Alcantara, P. Lavela, G. F. Ortiz, J. L. Tirado, Electrochemical Solid-State Letters. 8, A222–A225 (2005).
[21] D. A. Stevens, J. R. Dahn, Journal of The Electrochemical Society. 147, 1271–1273 (2000).
[22] S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Energy Environmental Science. 4, 3342–3345 (2011).
[23] P. Thomas, D. Billaud, Electrochim. Acta. 46, 39–47 (2000).
[24] J. R. Dahn, T. Zheng, Y. Liu, J. S. Xue, Science. 270, 590–593 (1995).
[25] A. Maazaz, C. Delmas, P. Hagenmuller, Journal of Inclusion Phenomena Macro Chemistry. 1, 45 (1983).
[26] P. Senguttuvan, G. Rousse, V. Seznec, J. M. Tarascon, M. R. Palacin, Chemical Materials. 23, 4109 (2011).
[27] H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson, T. Rajh, Journal of Physical Chemistry Letters. 2, 2560–2565 (2011).
[28] C. Didier, M. Guignard, C. Denage, O. Szajwaj, S. Ito, I. Saadoune, Electrochemical Solid-State Letters. 14, A75 (2011).
[29] D. Hamani, M. Ati, J. M. Tarascon, P. Rozier, Electrochemical Communication.13, 938 (2011).
[30] H. Liu, H. Zhou, L. Chen, Z. Tang, W. Yang, Journal of Power Sources. 196, 814 (2011).
[31] M. Armand, J. M. Tarascon, Nature. 451, 652 (2008).
[32] M. R. Palacin, Chemical Society Reviews. 38, 2565 (2009).
[33] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature. 407, 496 (2000).
[34] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. VanSchalkwijk, Nature Materials. 4, 366 (2005).
[35] R. Alcantara, M. Jaraba, P. Lavela, J. L. Tirado, Chemical Materials. 14, 2847 (2002).
[36] T. B. Kim, J. W. Choi, H. S. Ryu, G. B. Cho, K. W. Kim, J. H. Ahn, K. K. Cho, H. J. Ahn, Journal of Power Sources. 174, 1275 (2007).
[37] J. S. Kim, G. B. Cho, K. W. Kim, J. H. Ahn, G. Wang, H. J. Ahn, Current Applied Physics. 11, S215 (2011).
[38] X. Liu, S. Kang, J. Kim, H. Ahn, S. Lim, I. Ahn, Rare Metals. 30, 5 (2011).
[39] J. S. Kim, H. J. Ahn, H. S. Ryu, D. J. Kim, G. B. Cho, K. W. Kim, T. H. Nam, J. H. Ahn, Journal of Power Sources. 178, 852 (2008).
[40] T. R. Jow, L. W. Shacklette, M. Maxfield, D. Vernick, Journal of The Electrochemical Society. 134, 1730 (1987).
[41] Q. Sun, Q. Q. Ren, H. Li, Z. W. Fu, Electrochemical Communications. 13, 1462 (2011).
[42] L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, J. Liu, Chemical Communications. (2012).
[43] V. L. Chevrier, G. Ceder, Journal of The Electrochemical Society. 158, A1011 (2011).
[44] C. Delmas, F. Cherkaoui, A. Nadiri, P. Hagenmuller, Materials Research Bulletin. 22, 631 (1987).
[45] J. L. Rodrigo, P. Carrasco, J. Alamo, Materials Research Bulletin. 24, 611 (1989).
[46] C. E. Bamberger, G. M. Begun, O. B. Cavin, Journal of Solid State Chemistry. 73, 317 (1988).
[47] Y. Yue, W. Pang, Materials Research Bulletin. 25, 841 (1990).
[48] H. Guler, F. Kurtulus, Materials Chemistry Physics. 99, 394 (2006).
[49] R. Velchuri, B. V. Kumar, V. R. Devi, S. Seok II, M. Vithal, International Journal of Nanotechnology. 7, 1077 (2010).
[50] W. Wu, A. Mohamed, J. F. Whitacre, Journal of The Electrochemical Society. 160, A497-A504 (2013).
[51] N. Recham, J. N. Chotard, L. Dupont, K. Djellab, M. Armand, J. M. Tarascon, Journal of The Electrochemical Society. 156, A993-A999 (2009).
[52] Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L. V. Saraf, Z. Yang, J. Liu, Advance Materials. 23, 3155 (2011).
[53] K. West, B. Zachau-Christiansen, T. Jacobsen, S. Skaarup, Solid State Ionics. 1128, 28–30 (1988).
[54] K. West, B. Zachau-Christiansen, T. Jacobsen, S. Skaarup, Journal of Power Sources. 26, 341 (1989) .
[55] S. Tepavcevic, H. Xiong, V. R. Stamenkovic, X. Zuo, M. Balasubramanian, V. B. Prakapenka, C. S. Johnson, T. Rajh, ACS Nano. 6, 530 (2011).
[56] H. Liu, H. Zhou, L. Chen, Z. Tang, W. Yang, Journal of Power Sources. 196, 814 (2011).
[57] H. M. Liu, H. S. Zhou, L. P. Chen, Z. F. Tang, W. S. Yang, Journal of Power Sources. 196, 814 (2011).
[58] R. Shimanouchi-futagami, M. Nishimori, H. Nishizawa, Journal of materials science letters. 19, 405– 407 (2000).
[59] P. Bai, W. Xing, Z. Zhang, Z. Yan, Materials Letters. 24, 3128-3131 (2005).
[60] M. H. Youn, J. G. Seo, J. C. Jung, S. Park, D. R. Park, S. B. Lee, I. K. Song, Catalysis Today. 146, 57-62 (2009).
[61] S. Yuvaraj, R. Kalai Selvan, V. B. Kumar, I. Perelshtein, A. Gedanken, S. Lsakkimuthu, S. Arumugam, Ultrasonics-Sonochemistry. 21, 599-605 (2014).
[62] J. M. Kim, G. R. Yi, S. C. Lee, S. M. Lee, Y. Jo, H. W. Kang, G. Lee, H. J. Kim, Journal of Solid State Chemistry. 197, 53-59 (2013).
[63] N. K. Nga, L. T. Giang, T. Q. Huy, P. H. Viet, Claudio Migliaresi Colloids and Surfaces B: Biointerfaces. (2013).
[64] H. C. Dinh, S. I. Mho, Y. Kang, I. H. Yeo, Journal of Power Sources. 244, 189-195 (2013).
[65] J. Bu, C. Nie, J. Liang, L. Sun, Z. Xie, Q. Wu, C. Lin Nanotechnology. 22, 602 (2011).
[66] L. Shen, N. Bao, K. Yanagisawa, K. Domen, C. A. Grimes, A. Gupta, Jourmal of Physics Chemical. 111, 7280-7287 (2007).
[67] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. J. Schlenkert, American Chemical Society. 114, 10834 (1990).
[68] Z. Lin, J. J. Cai, L. E. Scriven, H. T. Davis, Journal of Physics Chemical. 98, 5984 (1994).
[69] B. J. Elliott, A. B. Scranton, J. H. Cameron, C. N. Bowman, Chemical Materials. 12, 633 (2000).
[70] C. S. Yang, D. D. Awschalom, G. D. Stucky, Chemical Materials. 13, 594 (2001).
[71] N. Bao, L. Shen, X. Lu, K. Yanagisawa, X. Feng, Chemical Physics Letters. 377, 119 (2003).
[72] J. Geng, J. J. Zhu, D. J. Lu, H. Y. Chen, Inorganic Chemistry. 45, 8403 (2006).
[73] R. A. Laudise, Elsevier Science. 159 (1985).
[74] T. Sugimoto, Advances in Colloid and interface Science. 28, 65-108 (1987).
[75] W. Jia, E. Reitz, P. Shimpi, E. G. Rodriguez, P. X. Gao, Y. Lei, Materials Research Bulletin. 44, 1681-1686 (2009).
[76] S. Kin, M. Kim, S.H. Hwang, S. K. Lim, Journal of Industrial and Engineering Chemistry. 18, 1141-1148 (2012)
[77] X. Cao, Y. C. Shu, Y. N. Hu, G. P. Li, C. Liu, Transactions of Nonferrous Metals Society of China. 23, 725-730 (2012).
[78] Y. Xu, C. Wang, S. Yang, Materials Letters. 78, 46-49 (2012).
[79] R. I. Walton, Chemical Society Reviews. 31, 230-238 (2002).
[80] B. Ellis, W.H. Kan, W. R. M. Makahnouk, L. F. Nazar, Journal of Materials Chemistry. 17, 3248-3254 (2007)
[81] G. Wanka, H. Hoffmann, W. Ulbricht, Macromolecules. 27, 4140 (1994).
[82] P. Alexandridis, J. F. Holzwarth, T. A. Hatton, Macromolecules. 27, 2414 (1994).
[83] M. A. Augustin, Y. Hemar, Chemical Society. 38, 902-912 (2009).
[84] X. Wu, X. Jiang, Q. Huo, Y. Zhang, Electrochimica Acta. 80, 50-55 (2012).
[85] H. C. Dinh, S. I. Mho I. H. Yeo, Electroanalysis. 23, 2079-2086 (2011).
[86] H. C. Dinh, H. Lim, K. D. Park, I. H. Yeo, Y. Kang, S. I. Mho, Nanoscience And Nanotechnology. 4, 015011-015015 (2013).
[87] C. M. Burba, R. Frech, Solid State Ionics. 177, 1489–1494 (2006).
[88] V. S. Kurazhkovskaya, D. M. Bykov, E. Y. Borovikova, N. Y. Boldyrev, L. Ikhalistsyn, A. I. Orlova, Vibrational Spectroscopy. 52 137–143 (2010).
[89] R. Pikl, D. de Waal, A. Aatiq, A. El Jazouli, Vibrational. Spectroscopy. 137–143 (1998).
[90] V. Aravindan, W. Chuiling, A. Madhavi, RSC Advances. 2, 7534-7539 (2012)
[91] J. Hodkiewicz, Thermo Fisher Scientific. Madison, WI, USA
[92] B. T. Liu, C. H. Hsu, W. H. Wang, Journal of the Taiwan Institute of Chemical Engineers. 43, 147-152 (2012).
[93] V. Aravindan, W. Chuiling, M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdrai, S. Madhavi, Physical Chemistry Chemical Physics. 14, 5808-5814 (2012).
[94] M. S. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito, Philosophical Transactions of The Royal Society. 368, 5355-5377 (2010).
[95] J. Y. Luo, Y. Y. Xia, Advanced Functional Materials. 17, 3877-3884 (2007).
[96] B. Pei, H. Yao, W. Zhang, Z. Yang, Journal of Power Sources. 220, 317 (2012).
[97] X. Lou, Y. Zhang, Journal of Materials Chemistry. 21, 4156 (2011).
[98] M. Y. Cho, S. M. Park, B. H. Choi, J. W. Lee, K. C. Roh, Journal of Ceramic Processing Research. 13, 166-169 (2012).
[99] C. Wang, G. Shao, Z. Ma, S. Liu, W. Song, J. Song, Electrochimica Acta. 130, 679-688 (2014).
[100] Y. Liu, Y. Qiao, W. Zhang, H. Xu, Z. Li, Y. Shen, L. Yuan, X. Hu, X. Dai, Y. Huang, Nano Energy. 5, 97-104 (2014).
[101] Z. Jian, L. Zhao, R. Wang, Y. S. Hu, H. Li, W. Chen, L. Chen, RSC Advances. 2, 1751-1754 (2012).
[102] J. Y. Luo, W. J. Cui, P. He, Y. Y. Xia, Nature Chemistry. 2, 760 (2010).
[103] W. Li, J. R. Dahn, D. S. Wainwright, Science. 264, 1115 (1994).
[104] W. Li, J. R. Dahn, Journal of The Electrochemical Society. 142, 1742 (1995).
[105] M. Zhang, J. R. Dahn, Journal of The Electrochemical Society. 143, 2730 (1996).
[106] S. M. Oh, S. W. Oh, C. S. Yoon, B. Scrosati, K. Amine, Y. K. Sun, Advanced Functional Materials. 20, 3260 (2010).
[107] K. Wu, X. Lin, L. Shao, M. Shui, N. Long, Y. Ren, J. Shu, Journal of Power Sources. 259, 177-182 (2014).
[108] Y. Lu, S. Zhang, Y. Li, L. Xue, G. Xu, X. Zhang, Journal of Power Sources. 247, 770-777 (2014).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊