( 您好!臺灣時間:2019/07/18 03:18
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Yu-Wen Su
論文名稱(外文):Study of Twin-Light-Source Module with Laser Multiplexing and Photon Recycling
指導教授(外文):Tsung-Hsun Yang
外文關鍵詞:Laser diodePhoton-recyclingdouble-light-source illumination systemellipticity
  • 被引用被引用:0
  • 點閱點閱:5
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, we proposed and demonstrated a novel structure to perform photon recycling for a double-light-source illumination system pumped by a laser. In the design, a phosphor layer is located at the first focus of an elliptical reflective surface, which is used to recycle the backward scattering light and refocus at the other phosphor layer at the second focus. The absorption spectrum should fit that of the emission light by the first phosphor. When the emission spectrum covers infrared light, the whole system is a double-light-source for white light and infrared light. In order to apply the proposed structure to automotive headlamp, we have optimized the structure by considering the ellipticity. Thus we evaluated various designs based on the proposed structure.
摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 6
1-3 論文大綱 9
第二章 基礎原理 10
2-1 光展量(Étendue) 10
2-2 輻射光度學 13
2-2-1輻射學 16
2-2-2照度餘弦定理 22
第三章 橢圓反射杯模型 25
3-1 公式推導與過程 27
3-2 反射杯參數對雙光源設計之影響 35
3-3模擬比對 46
3-4面光源在反射杯裡之反射特性- 49
3-5結論 57
第四章 具光子回收之雷射多工雙光源模組 58
4-1汽車近燈光法規概述 58
4-2 車燈設計種類 62
4-3 雙光源照明模組系統 63
4-4 光學系統架構I 66
4-5 光學系統架構II 70
4-5-1 系統II之利用效率 71
4-6 光學系統架構III 75
4-6-1透鏡設計 77
4-6-2近光燈模擬結果與分析 85
第五章 結論 89
參考文獻 91
中英文名詞對照表 99
1.M. Josephson, Edison: A Biography (McGraw-Hill, New York, 1959)。
2.S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
3.Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi,“Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
4.A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,”United States Patent, US 6685852 B2 (2004).
5.H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, and Q. Su, “Three-band white light from InGaN-based blue LED chip precoated with Green/red phosphors,”IEEE Photon. Technol. Lett. 17, 1160-1162 (2005).
6.Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames,“Auger recombination in InGaN measured by photoluminescence,”Appl. Phys. Lett. 91, 141101 (2007).
7.M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford,“Status and future of high-power light-emitting diodes for solid-state lighting,”J. Display Technol. 3, 160-175 (2007).
8.M. Liu and B. Rong,“Evaluation of LED application in general lighting,”Opt. Eng. 46, 1-6 (2007).
9.CREE Inc.,
http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20 Modules/XLamp/Data%20and%20Binning/XLampXTE.pdf.
10.T. Mukai, S. Nagahama, T. Kozaki, M. Sano, D. Morita, T. Yanamoto, M. Yamamoto, K. Akashi, and S. Masui,“Current status and future prospects of GaN-based LEDs and LDs,” Phys. Status Solidi A 201, 2712–2716 (2004).
11.Jr.Wierer, J. Y. Tsao, and D. S. Sizov, “Comparison between blue lasers and light-emitting diodes for future solid-state lighting,” Laser Photonics Rev. 7, 963–993 (2013)
12.A. Neumann J.J. Wierer. W. Davis, Y. Ohno, S. R .J. Brueck, and J. Y Tsao,“Four-color laser white illuminant demonstrating high color-rendering quality,”Opt Express, 19, A982-A990(2011).
13.Y. Xu, L. Chen, Y. Li, G. Song,and Y. Wang,“Phosphor-conversion white light using InGaN ultraviolet laser diode,”Appl. Phys. Lett. 92, 021129-021129-3 (2008).
14.K. A. Denault,M. Cantore., S .Nakamura, S. P. DenBaars.,and R. Seshadri, “Efficient and stable laser-driven white lighting,” AIP Advances, 3, 072107(2013).
15.N. Trivellin, M. Yushchenko, M. Buffolo,C. De Santi,M. Meneghini, G. Meneghesso,and E. Zanoni,“Laser-basedlighting:experimental analysis and perspectives,”2D Mater, 10, 1166 (2017).
16.A. Lenef, J. Kelso, M.Tchoul, O. Mehl, J. Sorg, Y. Zheng, “Laser-activated remote phosphor conversion with ceramic phosphors,’’ In Proceedings of the Thirteenth International Conference on Solid State Lighting, San Diego, CA, USA, 17–21 (2014).
17.M. Daniels, O. Mehl, and U. Hartwig,“Laser-activated remote phosphor light engine for projection applications.” In Proceedings of the Current Developments in Lens Design and Optical Engineering XVI, San Diego, CA, USA, 9–13 (2015).
18.L. Ulrich,“Whiter brights with lasers,” IEEE Spectr. 50, 36–56(2013).
19.T. Reiners, “Headlight module,” United States Patent, US 9702519 B2 (2017).
20.DENAULT, A. Kristin, “Efficient and stable laser-driven white lighting,”. AIP Advances,3,7.(2013).
21.U.S. Department of Transportation, Automated Vehicle Development. National Highway Traffic Safety Administration.
22.Audi A8. http://www.audi.com.tw/tw/web/en/models/a/A8.html.
23.Lassa, Todd. The beginning of the end of driving. Motor Trend(2013).
24.J. Dokic, B. Muller,and G. Meyer,“European roadmap smart systems for automated driving”, European Technology Platform on Smart Systems Integration(2015).
25.Colour & Vision database, http://www.cvrl.org/.
26.E. Hecht, Optics (Addison Wesley, San Francisco, 2002).
27.V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE Press, Washington, 1998).
29.J. M. Palmer and B. G. Grant, The Art of Radiometry (SPIE Press, Washington, 1998).
30.W. T. Welford and R. Winston, High Collection Nonimaging Optics : Chap. 2.7 (Academic, New York, 1989).
31.H. Ries, N. Shatz, J. Bortz, and W. Spirkl, “Performance limitations of rotationally symmetric nonimaging devices,” J. Opt. Soc. Am. A 14, 2855-2862 (1997).
32.I. Jaadane, P. Boulenguez, S. Chahory, S. Carré, M. Savoldelli, L. Jonet, F. Behar-Cohen, C. Martinsons, and A. Torriglia, “Retinal damage induced by commercial light emitting diodes (LEDs),” Free Radi. Bio. Med. 84, 337-384 (2015).
33.Audi laser headlight, https://www.auditechnologyportal.de/en/electrielectronics/lighting-technology/matrix-laser-technology1.
34.BMW Laser light Technology,
35.何信穎,白光 LED 之 YAG 螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十六年。
36.紀葦世,高效能YAG 螢光粉之特性量測與模型,元智大學光電工程研究所碩士論文,中華民國九十九年。
37.陳靜儀,矽酸鹽螢光粉用於白光 LED 之光學模型,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
40.C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T.H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
41.C. C. Sun, C. Y. Chen, J. H. Chang, T. H. Yang, W. S. Ji, Y. S. Jeng, and H. M. Wu, “Linear calculation model for prediction of color rendering index performance associated with correlated color temperature of white light emitting diodes with two phosphors,” Opt. Eng. 51, 054003 (2012).
42.T. H. Yang, C. Y. Chen, Y. Y. Chang, B. Glorieux, Y. N. Peng, H. X. Chen, T. Y. Chung, T. X. Lee, and C. C. Sun, “Precise simulation of spectrum for green emitting phosphors pumped by a blue LED die,” IEEE Photon. J. 6, 8400510 (2014).
43.McKinsey & Company Inc., http://www.mckinsey.com/.
46.ECE Regulation , http://www.unece.org/trans/main/.
51.程勉儒,高功率白光 LED 適應性車燈之光學設計,國立中央大學碩士論文,中華民國103年。
電子全文 電子全文(網際網路公開日期:20240130)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔