跳到主要內容

臺灣博碩士論文加值系統

(54.227.97.219) 您好!臺灣時間:2021/12/01 01:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:裴皇玲
研究生(外文):Hoang-Linh Bui
論文名稱:聚電解質和多價植酸之間向抗菌強韌水凝膠的離子絡合作用
論文名稱(外文):Ionotropic complexation between polyelectrolyte and multivalent phytic acid toward antimicrobial tough hydrogels
指導教授:黃俊仁黃俊仁引用關係
指導教授(外文):Chun-Jen Huang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:生醫科學與工程學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:77
中文關鍵詞:聚電解質季銨鹽植酸靜電相互作用特定的離子效應離子橋接效應
外文關鍵詞:Polyelectrolytequaternary ammoniumphytic acidelectrostatic interactionspecific ion effection-bridging effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據研究,含有重複四級銨陽離子的聚(甲基丙烯酸三甲基氨基)乙酯(pTMAEMA)聚合物在醫院感染中具有有效的抗微生物活性。然而,pTMAEMA水凝膠的三維結構在結果中所顯示很低的最大壓縮應力,表示其機械性質是弱的。聚合物鏈段之間的低摩擦力和聚合物鍊長度的不均勻分佈導致水凝膠有柔軟和易脆的特性。這些特性限制了pTMAEMA水凝膠在生物材料中的潛在應用。因此,我們透過天然的多原子價植酸(PA)將可逆的物理性交聯劑加入pTMAEMA網狀結構。 PA的機械性質和生物性的增強使其廣泛地運用於生物醫學材料。在pTMAEMA水凝膠的四級銨基團和PA的陰離子基團之間形成的離子鍵(pTMAEMA-PA水凝膠)改善了水凝膠的韌性和耐久性(壓縮斷裂應力高於1百萬帕,在4次加載 - 卸載循環後的遲滯現象穩定性)。此外,在低至高偏移下的壓縮模數的變化以及在增加的鹽濃度下水凝膠的體積比的變化表示PA的離子橋接。 此外,由於可逆的物理交聯劑,pTMAEMA-PA如滯後應力-應變曲線所示,顯示出類似彈性體的特性。有趣的是,pTMAEMA與六偏磷酸鈉(PP6-)對接顯示出對細菌高度抗沾黏性,而pTMAEMA-PA水凝膠由於PA的強螯合能力而獲得殺菌效果。這一發現可能會擴大pTMAEMA水凝膠在未來作為多功能抗菌材料的應用範圍。
Poly((trimethylamino)ethyl methacrylate chloride) (pTMAEMA) brushes, containing repeated quaternary ammonium cations, has been proposed with efficient antimicrobial activity in nosocomial infection. However, 3-dimentional structure as pTMAEMA hydrogels shows weak mechanical properties as demonstrated in the result of low maximum compressive stress. The low friction between polymer chains and the heterogeneous distribution of the polymer chain length lead to the soft and brittle characteristics of the polyelectrolyte hydrogels. These characteristics limit the potential applications of pTMAEMA as biomaterials. Therefore, we introduce reversible physical crosslinkers to pTMAEMA network via docking natural multivalent phytic acid (PA). PA has been widely used for the mechanical enhancement of biomedical materials. Ionic bonds formed between quaternary ammonium groups of pTMAEMA hydrogels and anion groups of PA (pTMAEMA-PA hydrogels) improve their toughness and durability (compressive fracture stress above 1 MPa, hysteresis loop stability after 4 loading-unloading cycles). Furthermore, the change in the compressive modulus at low to high offset, and the change in the volume ratio of the hydrogels under the increasing saline concentration suggest the ion-bridging of PA. In addition, owing to the reversible physical crosslinkers, pTMAEMA-PA also displayed elastomer-like characteristic as shown in the hysteresis stress-strain curve. Interestingly, pTMAEMA docking with sodium hexametaphosphate (PP6-) shows high resistance to bacterial fouling, while pTMAEMA-PA hydrogels acquire bactericidal effect due to the strong chelating capacity of PA. This finding may broaden the application of pTMAEMA hydrogels as a versatile antibacterial material in the future.
Table of Contents
摘要 i
Abstract ii
Acknowledgment iii
Table of Contents iv
List of Abbreviations vii
List of Figures viii
List of Tables 11
Chapter 1: Literature Review. 1
1-1. Healthcare-associated infection. 1
1-2. Antibiotic-resistant issues and antibiotic alternatives. 2
1-3. Biofilm formation. 4
1-4. “Kill and release” surfaces. 5
1-4-1. “K + R”-type antibacterial surfaces. 6
1-4-2. “K → R”-type antibacterial surfaces. 7
1-4-3. “K + (R)”-type antibacterial surfaces. 8
1-5. Poly((trimethylamino)ethyl methacrylate chloride) and its tunability. 10
1-6. Engineering tough hydrogels. 14
1-6-1. Polymer-intercalated nanocomposite hydrogel. 14
1-6-2. Double-network hydrogels. 15
1-6-3. Dual-crosslink hydrogels. 16
1-6-4. Fully physical-crosslinked hydrogels. 17
1-7. Phytic acid and its beneficial effects. 19
Chapter 2: Research Objectives. 21
Chapter 3: Materials and Methods. 23
3-1. Materials. 23
3-2. Methods. 23
3-2-1. Preparation of polycationic hydrogels. 23
3-2-2. Equilibrium water content measurement. 24
3-2-3. Fourier transformed infrared (FT-IR) spectra analysis. 24
3-2-4. Compressive mechanical test. 24
3-2-5. Stability test. 25
3-2-6. Fouling-resistant test. 25
3-2-7. Antibacterial activity test. 26
Chapter 4: Results. 27
4-1. Preparation of pTMAEMA hydrogels. 27
4-2. Hydration properties of pTMAEMA hydrogels coupled with different anions. 28
4-3. Mechanical properties of pTMAEMA hydrogels coupled with different anions. 29
4-4. FT-IR spectra analysis. 31
4-5. Concentration-dependent properties of pTMAEMA-PA. 32
4-6. Ion exchange effect on pTMAEMA-PA hydrogels. 34
4-7. Fatigue-resistant properties of pTMAEMA-PA hydrogels. 35
4-8. Stiffness and toughness of pTMAEMA after coupling with kosmotropic and chaotropic anions. 35
4-9. Antibacterial activity of pTMAEMA-PA. 36
4-9-1. Bacterial attachment test of pTMAEMA docking with counterions. 36
4-9-2. Antibacterial capability of pTMAEMA-PA. 37
Chapter 5: Discussions. 39
5-1. Enhancement of mechanical properties of pTMAEMA-PA. 39
5-2. Ionic crosslinking capability of PA. 41
5-3. Summary and outlook on how to enhance mechanical properties of polyelectrolyte hydrogels via ionic coupling with counterions. 43
5-4. Antibacterial activity of pTMAEMA-PA 46
Chapter 6: Conclusions. 49
Chapter 7: Future perspectives. 50
References 51
[1] O. Azzaroni, A.A. Brown, W.T. Huck, Tunable wettability by clicking counterions into polyelectrolyte brushes, Adv. Mater., 19 (2007) 151-154.
[2] ZME science, What are biofilms and how they form, 2017 January 20th, 2017]; Available from: https://www.zmescience.com/science/what-are-biofilms/.
[3] D. Gu, S. Tan, C. Xu, A.J. O'Connor, G.G. Qiao, Engineering tough, highly compressible, biodegradable hydrogels by tuning the network architecture, ChemComm, 53 (2017) 6756-6759.
[4] W. Kunz, Specific ion effects in colloidal and biological systems, Curr. Opin. Colloid Interface Sci., 15 (2010) 34-39.
[5] T. Wei, Z. Tang, Q. Yu, H. Chen, Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities, ACS Appl. Mater. Interfaces, 9 (2017) 37511-37523.
[6] J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double‐network hydrogels with extremely high mechanical strength, Adv. Mater., 15 (2003) 1155-1158.
[7] K. Haraguchi,T. Takehisa, Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de‐swelling properties, Adv. Mater., 14 (2002) 1120-1124.
[8] B. Cao, C.-J. Lee, Z. Zeng, F. Cheng, F. Xu, H. Cong, G. Cheng, Electroactive poly (sulfobetaine-3, 4-ethylenedioxythiophene)(PSBEDOT) with controllable antifouling and antimicrobial properties, Chem. Sci., 7 (2016) 1976-1981.
[9] Q. Yu, L.K. Ista, G.P. López, Nanopatterned antimicrobial enzymatic surfaces combining biocidal and fouling release properties, Nanoscale, 6 (2014) 4750-4757.
[10] A. LS Santos, C. L Sodre, R. S Valle, B. A Silva, E. A Abi-chacra, L. V Silva, A. L Souza-Goncalves, L. S Sangenito, D. S Goncalves, L. OP Souza, Antimicrobial action of chelating agents: repercussions on the microorganism development, virulence and pathogenesis, Curr. Med. Chem., 19 (2012) 2715-2737.
[11] S. Moya, O. Azzaroni, T. Farhan, V.L. Osborne, W.T. Huck, Locking and unlocking of polyelectrolyte brushes: toward the fabrication of chemically controlled nanoactuators, Angew. Chem. Int. Ed. Engl., 44 (2005) 4578-4581.
[12] T.L. Sun, T. Kurokawa, S. Kuroda, A.B. Ihsan, T. Akasaki, K. Sato, M.A. Haque, T. Nakajima, J.P. Gong, Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity, Nat. Mater., 12 (2013) 932.
[13] Z. Qi, P. Bharate, C.-H. Lai, B. Ziem, C. Böttcher, A. Schulz, F. Beckert, B. Hatting, R. Mülhaupt, P.H. Seeberger, Multivalency at interfaces: supramolecular carbohydrate-functionalized graphene derivatives for bacterial capture, release, and disinfection, Nano Lett., 15 (2015) 6051-6057.
[14] M.C. Jennings, K.P. Minbiole, W.M. Wuest, Quaternary Ammonium Compounds: An Antimicrobial Mainstay and Platform for Innovation to Address Bacterial Resistance, ACS Infect. Dis., 1 (2015) 288-303.
[15] C.J. Huang, Y.S. Chen, Y. Chang, Counterion-activated nanoactuator: reversibly switchable killing/releasing bacteria on polycation brushes, ACS Appl. Mater. Interfaces, 7 (2015) 2415-23.
[16] G. Ducel, Fabry, J., Nicolle, L., World Health Organization Prevention of hospital-acquired infections: a practical guide., (2002).
[17] R.P. Wenzel, R.L. Thompson, S.M. Landry, B.S. Russell, P.J. Miller, S.P. de Leon, G.B. Miller, Hospital-Acquired Infections in Intensive Care Unit Patients An Overview with Emphasis on Epidemics, Infect. Control Hosp. Epidemiol., 4 (1983) 371-375.
[18] W.H.O, Antimicrobial resistance: global report on surveillance, 2014: World Health Organization.
[19] C.D.C , Antibiotic / Antimicrobial Resistance (AR / AMR), Available from: https://www.cdc.gov/drugresistance/.
[20] J.M. Munita,C.A. Arias, Mechanisms of antibiotic resistance, Microbiol. Spectr., 4 (2016).
[21] E.P. Abraham,E. Chain, An enzyme from bacteria able to destroy penicillin, Nature, 146 (1940) 837.
[22] K. Poole, Overcoming antimicrobial resistance by targeting resistance mechanisms, J. Pharm. Pharmacol., 53 (2001) 283-294.
[23] P. Nordmann, T. Naas, L. Poirel, Global spread of carbapenemase-producing Enterobacteriaceae, Emerg. Infect. Dis., 17 (2011) 1791.
[24] Y.-Y. Liu, Y. Wang, T.R. Walsh, L.-X. Yi, R. Zhang, J. Spencer, Y. Doi, G. Tian, B. Dong, X. Huang, Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study, Lancet Infect. Dis., 16 (2016) 161-168.
[25] S. Pal, R. Nisi, M. Stoppa, A. Licciulli, Silver-Functionalized Bacterial Cellulose as Antibacterial Membrane for Wound-Healing Applications, ACS Omega, 2 (2017) 3632-3639.
[26] J.S. Boateng, K.H. Matthews, H.N. Stevens, G.M. Eccleston, Wound healing dressings and drug delivery systems: a review, J. Pharm. Sci., 97 (2008) 2892-2923.
[27] J.A. Lemire, J.J. Harrison, R.J. Turner, Antimicrobial activity of metals: mechanisms, molecular targets and applications, Nat. Rev. Microbiol., 11 (2013) 371.
[28] E. Banin, A. Lozinski, K.M. Brady, E. Berenshtein, P.W. Butterfield, M. Moshe, M. Chevion, E.P. Greenberg, E. Banin, The potential of desferrioxamine-gallium as an anti-Pseudomonas therapeutic agent, Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 16761-16766.
[29] Y. Kaneko, M. Thoendel, O. Olakanmi, B.E. Britigan, P.K. Singh, The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity, J. Clin. Investig., 117 (2007) 877-888.
[30] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv., 27 (2009) 76-83.
[31] V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities, Adv. Colloid Interface Sci., 145 (2009) 83-96.
[32] S. Wilks, H. Michels, C. Keevil, The survival of Escherichia coli O157 on a range of metal surfaces, Int. J. Food Microbiol., 105 (2005) 445-454.
[33] D. Quaranta, T. Krans, C.E. Santo, C.G. Elowsky, D.W. Domaille, C.J. Chang, G. Grass, Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces, Appl. Environ. Microbiol., 77 (2011) 416-426.
[34] P.D. Cotter, R.P. Ross, C. Hill, Bacteriocins—a viable alternative to antibiotics?, Nat. Rev. Microbiol., 11 (2013) 95.
[35] C. Piper, L.A. Draper, P.D. Cotter, R.P. Ross, C. Hill, A comparison of the activities of lacticin 3147 and nisin against drug-resistant Staphylococcus aureus and Enterococcus species, J. Antimicrob. Chemother., 64 (2009) 546-551.
[36] D.B. Diep, M. Skaugen, Z. Salehian, H. Holo, I.F. Nes, Common mechanisms of target cell recognition and immunity for class II bacteriocins, Proc. Natl. Acad. Sci. U.S.A., 104 (2007) 2384-2389.
[37] W.M. Parks, A.R. Bottrill, O.A. Pierrat, M.C. Durrant, A. Maxwell, The action of the bacterial toxin, microcin B17, on DNA gyrase, Biochimie, 89 (2007) 500-507.
[38] M.C. Bagley, J.W. Dale, E.A. Merritt, X. Xiong, Thiopeptide antibiotics, Chem. Rev., 105 (2005) 685-714.
[39] P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton, Biofilms as complex differentiated communities, Annu. Rev. Microbiol., 56 (2002) 187-209.
[40] D. Monroe, Looking for chinks in the armor of bacterial biofilms, PLOS Biol., 5 (2007) e307.
[41] P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton, Biofilms as complex differentiated communities, Annu. Rev. Microbiol., 56 (2002) 187-209.
[42] B. Wang, Q. Xu, Z. Ye, H. Liu, Q. Lin, K. Nan, Y. Li, Y. Wang, L. Qi, H. Chen, Copolymer brushes with temperature-triggered, reversibly switchable bactericidal and antifouling properties for biomaterial surfaces, ACS Appl. Mater. Interfaces, 8 (2016) 27207-27217.
[43] Q. Yu, J. Cho, P. Shivapooja, L.K. Ista, G.P. López, Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria, ACS Appl. Mater. Interfaces, 5 (2013) 9295-9304.
[44] M. He, Q. Wang, R. Wang, Y. Xie, W. Zhao, C. Zhao, Design of antibacterial poly (ether sulfone) membranes via covalently attaching hydrogel thin layers loaded with ag nanoparticles, ACS Appl. Mater. Interfaces, 9 (2017) 15962-15974.
[45] D. Alves, M. Olívia Pereira, Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces, Biofouling, 30 (2014) 483-499.
[46] Q. Yu, P. Shivapooja, L.M. Johnson, G. Tizazu, G.J. Leggett, G.P. López, Nanopatterned polymer brushes as switchable bioactive interfaces, Nanoscale, 5 (2013) 3632-3637.
[47] S. Yan, H. Shi, L. Song, X. Wang, L. Liu, S. Luan, Y. Yang, J. Yin, Nonleaching Bacteria-Responsive Antibacterial Surface Based on a Unique Hierarchical Architecture, ACS Appl. Mater. Interfaces, 8 (2016) 24471-24481.
[48] T. Wei, W. Zhan, Q. Yu, H. Chen, Smart Biointerface with Photoswitched Functions between Bactericidal Activity and Bacteria-Releasing Ability, ACS Appl. Mater. Interfaces, 9 (2017) 25767-25774.
[49] G. Cheng, H. Xue, Z. Zhang, S. Chen, S. Jiang, A switchable biocompatible polymer surface with self‐sterilizing and nonfouling capabilities, Angew. Chem., 120 (2008) 8963-8966.
[50] Z. Cao, L. Mi, J. Mendiola, J.R. Ella‐Menye, L. Zhang, H. Xue, S. Jiang, Reversibly switching the function of a surface between attacking and defending against bacteria, Angew. Chem. Int. Ed. Engl., 51 (2012) 2602-2605.
[51] X. Wang, S. Yuan, Y. Guo, D. Shi, T. Jiang, S. Yan, J. Ma, H. Shi, S. Luan, J. Yin, Facile fabrication of bactericidal and antifouling switchable chitosan wound dressing through a ‘click’-type interfacial reaction, Colloids Surf. B, 136 (2015) 7-13.
[52] S. Yuan, Y. Li, S. Luan, H. Shi, S. Yan, J. Yin, Infection-resistant styrenic thermoplastic elastomers that can switch from bactericidal capability to anti-adhesion, J. Mater. Chem. B, 4 (2016) 1081-1089.
[53] Y.-S. Dong, X.-H. Xiong, X.-W. Lu, Z.-Q. Wu, H. Chen, Antibacterial surfaces based on poly (cationic liquid) brushes: switchability between killing and releasing via anion counterion switching, J. Mater. Chem. B, 4 (2016) 6111-6116.
[54] M. Tan, H. Wang, Y. Wang, G. Chen, L. Yuan, H. Chen, Recyclable antibacterial material: silicon grafted with 3, 6-O-sulfated chitosan and specifically bound by lysozyme, J. Mater. Chem. B, 2 (2014) 569-576.
[55] R. Kaur,S. Liu, Antibacterial surface design–Contact kill, Prog. Surf. Sci., 91 (2016) 136-153.
[56] J.A. Hiller, J.D. Mendelsohn, M.F. Rubner, Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers, Nat. Mater., 1 (2002) 59.
[57] D.W. Pack, A.S. Hoffman, S. Pun, P.S. Stayton, Design and development of polymers for gene delivery, Nat. Rev. Drug Discov., 4 (2005) 581.
[58] K.D. Demadis, M. Paspalaki, J. Theodorou, Controlled release of bis (phosphonate) pharmaceuticals from cationic biodegradable polymeric matrices, Ind. Eng. Chem. Res., 50 (2011) 5873-5876.
[59] O. Azzaroni, S. Moya, T. Farhan, A.A. Brown, W.T. Huck, Switching the properties of polyelectrolyte brushes via “hydrophobic collapse”, Macromolecules, 38 (2005) 10192-10199.
[60] S.K. Samal, M. Dash, S. Van Vlierberghe, D.L. Kaplan, E. Chiellini, C. Van Blitterswijk, L. Moroni, P. Dubruel, Cationic polymers and their therapeutic potential, Chem. Soc. Rev., 41 (2012) 7147-7194.
[61] S.E. Moya, O. Azzaroni, T. Kelby, E. Donath, W.T. Huck, Explanation for the apparent absence of collapse of polyelectrolyte brushes in the presence of bulky ions, J. Phys. Chem. B, 111 (2007) 7034-7040.
[62] S.P. Denyer, Mechanisms of action of antibacterial biocides, Int. Biodeterior Biodegradation, 36 (1995) 227-245.
[63] H.W. Boucher, G.H. Talbot, J.S. Bradley, J.E. Edwards, D. Gilbert, L.B. Rice, M. Scheld, B. Spellberg, J. Bartlett, Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, Clin. Infect. Dis., 48 (2009) 1-12.
[64] J.P. Gong, Why are double network hydrogels so tough?, Soft Matter, 6 (2010) 2583.
[65] X. Zhao, Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks, Soft Matter, 10 (2014) 672-687.
[66] L. Tang, W. Liu, G. Liu, High‐Strength Hydrogels with Integrated Functions of H‐bonding and Thermoresponsive Surface‐Mediated Reverse Transfection and Cell Detachment, Adv. Mater., 22 (2010) 2652-2656.
[67] J. Ning, G. Li, K. Haraguchi, Synthesis of highly stretchable, mechanically tough, zwitterionic sulfobetaine nanocomposite gels with controlled thermosensitivities, Macromolecules, 46 (2013) 5317-5328.
[68] L. Han, X. Lu, K. Liu, K. Wang, L. Fang, L.-T. Weng, H. Zhang, Y. Tang, F. Ren, C. Zhao, Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization, ACS Nano, 11 (2017) 2561-2574.
[69] M. Liu, J. Huang, B. Luo, C. Zhou, Tough and highly stretchable polyacrylamide nanocomposite hydrogels with chitin nanocrystals, Int. J. Biol. Macromol., 78 (2015) 23-31.
[70] X. Yan, Q. Chen, L. Zhu, H. Chen, D. Wei, F. Chen, Z. Tang, J. Yang, J. Zheng, High strength and self-healable gelatin/polyacrylamide double network hydrogels, J. Mater. Chem. B, 5 (2017) 7683-7691.
[71] Y. Tanaka, R. Kuwabara, Y.-H. Na, T. Kurokawa, J.P. Gong, Y. Osada, Determination of fracture energy of high strength double network hydrogels, J. Phys. Chem. B, 109 (2005) 11559-11562.
[72] Y. Hagiwara, A. Putra, A. Kakugo, H. Furukawa, J.P. Gong, Ligament-like tough double-network hydrogel based on bacterial cellulose, Cellulose, 17 (2010) 93-101.
[73] Y. Liu, W. He, Z. Zhang, B. Lee, Recent developments in tough hydrogels for biomedical applications, Gels, 4 (2018) 46.
[74] W. Wang, Y. Zhang, W. Liu, Bioinspired fabrication of high strength hydrogels from non-covalent interactions, Prog. Polym. Sci., 71 (2017) 1-25.
[75] Q. Chen, L. Zhu, H. Chen, H. Yan, L. Huang, J. Yang, J. Zheng, A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self‐Healing Properties, Adv. Funct. Mater., 25 (2015) 1598-1607.
[76] F. Shahidi, Antinutrients and phytochemicals in food. 1997: ACS Publications.
[77] A. Claxson, C. Morris, D. Blake, M. Siren, B. Halliwell, T. Gustafsson, B. Löfkvist, I. Bergelin, The anti-inflammatory effects ofd-myo-inositol-1.2. 6-trisphosphate (PP56) on animal models of inflammation, Agents Actions, 29 (1990) 68-70.
[78] E. Graf, K.L. Empson, J.W. Eaton, Phytic acid. A natural antioxidant, J. Biol. Chem., 262 (1987) 11647-11650.
[79] U. FDA, Agency Response Letter GRAS Notice No. GRN 000388 [Rebaudioside A purified from the leaves of Stevia rebaudiana (Bertoni) Bertoni (rebaudioside A)], Center for Food Safety and Applied Nutrition (CFSAN), (2012).
[80] S.-H. Lee, H.-J. Park, H.-K. Chun, S.-Y. Cho, S.-M. Cho, H.S. Lillehoj, Dietary phytic acid lowers the blood glucose level in diabetic KK mice, Nutr. Res., 26 (2006) 474-479.
[81] Y. Hiasa, Y. Kitahori, J. Morimoto, N. Konishi, S. Nakaoka, H. Nishioka, Carcinogenicity study in rats of phytic acid ‘Daiichi’, a natural food additive, Food Chem. Toxicol., 30 (1992) 117-125.
[82] S. Onomi, Y. Okazaki, T. Katayama, Effect of dietary level of phytic acid on hepatic and serum lipid status in rats fed a high-sucrose diet, Biosci. Biotechnol. Biochem., 68 (2004) 1379-1381.
[83] C. Zhou, Z. Chen, H. Yang, K. Hou, X. Zeng, Y. Zheng, J. Cheng, Nature-Inspired Strategy toward Superhydrophobic Fabrics for Versatile Oil/Water Separation, ACS Appl. Mater. Interfaces, 9 (2017) 9184-9194.
[84] S. Meininger, C. Blum, M. Schamel, J.E. Barralet, A. Ignatius, U. Gbureck, Phytic acid as alternative setting retarder enhanced biological performance of dicalcium phosphate cement in vitro, Sci. Rep., 7 (2017) 558.
[85] X. Wang, K. Wen, X. Yang, L. Li, X. Yu, Biocompatibility and anti-calcification of a biological artery immobilized with naturally-occurring phytic acid as the crosslinking agent, J. Mater. Chem. B, 5 (2017) 8115-8124.
[86] T. Zhang, H. Yan, L. Shen, Z. Fang, X. Zhang, J. Wang, B. Zhang, Chitosan/phytic acid polyelectrolyte complex: a green and renewable intumescent flame retardant system for ethylene–vinyl acetate copolymer, Ind. Eng. Chem. Res., 53 (2014) 19199-19207.
[87] P. Ilgin, H. Durak, A. Gür, A novel pH-responsive p (AAm-co-METAC)/MMT composite hydrogel: Synthesis, characterization and its absorption performance on heavy metal ions, Polym. Plast. Technol. Eng., 54 (2015) 603-615.
[88] G. Liu, Tuning the Properties of Charged Polymers at the Solid/Liquid Interface with Ions, Langmuir, (2018).
[89] S.M. Omar Azzaroni, Tamer Farhan, Andrew A. Brown, and Wilhelm T. S. Huck, Switching the Properties of Polyelectrolyte Brushes via “Hydrophobic Collapse”, Macromolecules, 38 ( 2005) 10192-10199.
[90] S. Nihonyanagi, S. Yamaguchi, T. Tahara, Counterion effect on interfacial water at charged interfaces and its relevance to the Hofmeister series, J. Am. Chem. Soc., 136 (2014) 6155-6158.
[91] K. Chen, S. Zhang, A. Li, X. Tang, L. Li, L. Guo, Bioinspired Interfacial Chelating-like Reinforcement Strategy toward Mechanically Enhanced Lamellar Materials, ACS Nano, 12 (2018) 4269-4279.
[92] X. Zhao, N. Huebsch, D.J. Mooney, Z. Suo, Stress-relaxation behavior in gels with ionic and covalent crosslinks, J. Appl. Phys., 107 (2010) 063509.
[93] S. Nihonyanagi, S. Yamaguchi, T. Tahara, Counterion effect on interfacial water at charged interfaces and its relevance to the Hofmeister series, J. Am. Chem. Soc., 136 (2014) 6155-8.
[94] H. He, X. Xuan, C. Zhang, Y. Song, S. Chen, X. Gong, B. Ren, J. Zheng, J. Wu, Simple Thermal Pretreatment Strategy to Tune Mechanical and Antifouling Properties of Zwitterionic Hydrogels, Langmuir, (2018).
[95] S. Moya, O. Azzaroni, T. Farhan, V.L. Osborne, W.T. Huck, Locking and unlocking of polyelectrolyte brushes: toward the fabrication of chemically controlled nanoactuators, Angew. Chem. Int. Ed. Engl., 44 (2005) 4578-81.
[96] N.H. Kim,M.S. Rhee, Phytic acid and sodium chloride show marked synergistic bactericidal effects against nonadapted and acid-adapted Escherichia coli O157: H7 strains, Appl. Environ. Microbiol., 82 (2016) 1040-1049.
[97] N.H. Kim,M.S. Rhee, Synergistic bactericidal action of phytic acid and sodium chloride against Escherichia coli O157: H7 cells protected by a biofilm, Int. J. Food Microbiol., 227 (2016) 17-21.
[98] S.L. Percival, P. Kite, K. Eastwood, R. Murga, J. Carr, M.J. Arduino, R.M. Donlan, Tetrasodium EDTA as a novel central venous catheter lock solution against biofilm, Infect. Control Hosp. Epidemiol., 26 (2005) 515-519.
[99] L.M. Gaetke, C.J. McClain, C.J. Toleman, M.A. Stuart, Yogurt protects against growth retardation in weanling rats fed diets high in phytic acid, The J. Nutr. Biochem., 21 (2010) 147-152.
[100] T. Szkudelski, Phytic acid–induced metabolic changes in the rat, J. Anim. Physiol. Anim. Nutr., 89 (2005) 397-402.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top