(3.216.79.60) 您好!臺灣時間:2020/11/28 15:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許大衛
研究生(外文):David Hsu
論文名稱(外文):Structural Study on BaCeO3 Perovskite Thin Film by Sputtering
指導教授:李泉李泉引用關係
指導教授(外文):Li Chuan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:國際永續發展碩士在職專班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:27
中文關鍵詞:薄膜
外文關鍵詞:thin filmsputteringperovskite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Perovskites 結構組成的金屬氧化物於中高溫度(600 – 750C)環境下,以微觀尺度
可觀察到質子由氧原子移動至另一氧原子的情形,此現象被稱為跳躍機制(“hopping”
mechanism)。因為此跳躍機制,Perovskites 結構組成的金屬氧化物比起其他物質擁有較
佳的離子導特性(Proton conduction),而適合應用於燃料電池、電化學反應、感測器與
氫氣純化。
在本研究中,以金屬氧化物為靶材利用射頻濺鍍(RF sputtering)製備BaCeO3 薄膜於
矽基板與石英基板上,利用表面輪廓儀量測薄膜沉積速率後製備厚度100nm 的均勻薄膜,
接著以不同溫度與時間參數進行快速退火(Rapid Thermal Annealing, RTA)進而產生結晶
結構。經過快速退火後的薄膜將利用X 光繞射儀(X-ray diffraction spectrometer, XRD)
與拉曼光譜儀(Raman spectrometer) 觀察其結晶性、能量色散X 光譜儀(Energydispersive
X-ray spectrometer, EDS or EDX)量測其化學元素組成。本實驗目的在於改
變不同的濺鍍與快速退火條件找出製備Perovskites 結構BaCeO3 薄膜的最佳化參數。
For proton conduction in the mid- to high-range temperatures (600 – 750C), metal oxide
perovskites provide certain characteristics ideal for applications in fuel cells, electrochemical
reactors, sensors, and hydrogen purification. The capability of conducting protons in metal
oxide perovskites is commonly recognized as a “hopping” mechanism at the microscopic scale,
where protons jump from one oxygen atom to another by Coulombic force at high
temperatures. In this study, we fabricate BaCeO3 thin films by radio frequency sputtering using
metal oxide targets. The films are uniformly deposited on silicon and quartz substrates and
have a thickness of roughly 100 nm. After deposition, all films are subjected to rapid thermal
annealing at various temperatures and time periods in order to achieve crystalline structures.
Specific studies are then perform on the annealed films using surface profiler to determine
deposition rate, X-ray diffraction and Raman spectroscopy for the microstructures, and energydispersive
X-ray spectroscopy for elemental and chemical compositions. The results of these
tests determine a set of optimal parameters for processing BaCeO3 thin films based on the
conditions of deposition and thermal annealing.
CONTENT .................................................................................................................................... v
List of Figures ............................................................................................................................... vi
Chapter 1 Introduction .................................................................................................................... 1
1-1 Introduction ....................................................................................................................... 1
1-2 Objective ........................................................................................................................... 1
1-3 Scope ................................................................................................................................ 2
1-4 Study Layout ..................................................................................................................... 2
CHAPTER 2 Theories and Methods............................................................................................... 3
2-1 Perovskite .......................................................................................................................... 3
2-2 Proton Conduction............................................................................................................. 4
2-3 Applications of Perovskite films ....................................................................................... 6
CHAPTER 3 Experiments .............................................................................................................. 7
3-1 Experimental Procedure .................................................................................................... 7
3-2 Substrate and Material Preparation ................................................................................... 7
3-3 Deposition ......................................................................................................................... 8
3-4 Rapid Thermal Annealing ................................................................................................. 9
3-5 Thickness ........................................................................................................................... 9
3-6 Chrystal Structure .............................................................................................................. 9
3-7 Raman Spectroscopy ....................................................................................................... 10
3-8 Elemental Composition ................................................................................................... 10
CHAPTER 4 Results and Discussion ........................................................................................... 12
4-1 Deposition Rate and Film Thickness .............................................................................. 12
4-2 XRD ............................................................................................................................... 13
4-3 Raman Spectroscopy ....................................................................................................... 15
4-4 EDS Chemical composition ............................................................................................ 16
Chapter 5 Conclusions .................................................................................................................. 18
References .................................................................................................................................... 19
References
1. D. Medvedev, A. Murashkina, E. Pikalova, A. Demin, A. Podias, P. Tsiakaras, “BaCeO3:
materials development, properties and application," Prog. Mater Sci. 60: 72–129, 2014.
2. K. D. Kreuer, “On the complexity of proton conduction phenomena," Solid State Ionics.
136-137, 149-160, 2000.
3. K. D. Kreuer, “On the development of proton conducting materials for technological
applications,” Solid State Ionics. 97: 1-15, 1997.
4. H. Iwahara, "Technological challenges in the application of proton conducting ceramics,"
Solid State Ionics. 77:289–298, 1995.
5. T. Sato, T. Inoue, D. Ichinose, H. Funakubo, K. Uchiyama, “Fabrication of highly (110)-
oriented BaCeO3-based proton-conductive oxide thin films by RF magnetron sputtering
method,” Jpn. J. Appl. Phys. 55:02BC19, 2016.
6. K. Wasa, M. Kitabatake, H. Adachi, “Thin film materials technology sputtering of compound
materials," Pages 1-69, 2004.
7. K. Wasa, “Materials engineering for a better global environment,” Bull. Mater. Res., 18:937,
India (1995).
8. Y. Yano, K. Iijima, Y. Daitoh, T. Terashima, Y. Bando, Y. Watanabe, H. Kasatani, H.
Terauchi," Epitaxial growth and dielectric properties of BaTiO3 films on Pt electrodes by
reactive evaporation," J. Appl. Phys., 76:7833 (1994).
9. G. Rossetti Jr., L. Cross, K. Kushida," Stress induced shift of the Curie point in epitaxial
PbTiO3 thin films," Appl. Phys. Lett., 59:2524 (1991).
10. A. B. Stambouli, E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally
clean and efficient source of energy" 6: 433-455 (2002).
11. B. C. H. Steele, A. Heinzel, "Materials for fuel-cell technologies," Nature 414: 345-352
(2001).
12. E. D. Wachsman, K. T. Lee, "Lowering the Temperature of Solid Oxide Fuel Cells" Science
334: 935-939 (2011).
13. R. M. Ormerod, "Solid oxide fuel cells" Chem. Phys. Chem. Soc. Rev. 32:17-28 (2003)
14. N. Ito, M. Iijima, K. Kimura, S. Iguchi, "New intermediate temperature fuel cell with ultra thin proton conductor electrolyte," J. Power Sources. 152: 200-203 (2005)
15. S. Yamaguchia, S. Yamamotob, T. Shishidoc, M. Omoric, A. Okuboc, "Performance of fuel
cells based on thin proton conducting oxide electrolyte and hydrogen-permeable metal
film anode," J. Power Sources. 129: 4-6 (2004)
16. G. Ma, T. Shimura, H. Iwahara, "Ionic conduction and nonstoichiometry in
BaxCe0.90Y0.10O3−α," Solid State Ionics. 110(1-2):103-110, 1998.
17. N. Bonanos, K. S. Knight, B. Ellis, " Perovskite solid electrolytes: Structure, transport
properties and fuel cell applications," Solid State Ionics. 79:169–170, 1995.
18. K. D. Kreuer, "Proton conductivity: materials and applications," Chem. Mater. 8 (3): 610–
641 (1996).
19. W. Munch, K.D. Kreuer, G. Seifert, J. Maier, "Proton diffusion in perovskites: comparison
between BaCeO3, BaZrO3, SrTiO3, and CaTiO3 using quantum molecular dynamics," Solid
State Ionics. 136–137: 183–189, 2000.
20. Y.C. Jeong, D.H. Kim, B.K. Kim, Y.C. Kim, "Intra-octahedral proton transfer in bulk
orthorhombic perovskite barium cerate," Solid State Ionics. 226: 71-75, 2012.
21. M. Gomez, M. Griffin, S. Jindal, K. Rule, V. Cooper,"The effect of octahedral tilting on
proton binding sites and transition states in pseudo-cubic perovskite oxides," J. Chem.
Phys. 123:9, 2005.
22. N. Sata, H. Matsuta, Y. Akiyama, Y. Chiba, S. Shin, M. Ishigame “Fabrication of proton
conducting thin films of SrZrO3 and SrCeO 3 and their fundamental characterization," Solid
State Ionics 98:437-441, 1997.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔