(100.26.176.182) 您好!臺灣時間:2019/12/12 18:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:許威烈
研究生(外文):Wei-Lieh Hsu
論文名稱:以熵為特徵之視覺化交通監視系統
論文名稱(外文):A Vision-based Traffic Monitoring System Using Entropy-based Features
指導教授:范國清范國清引用關係
指導教授(外文):Kuo-Chin Fan
學位類別:博士
校院名稱:國立中央大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文出版年:2004
畢業學年度:92
語文別:英文
論文頁數:122
中文關鍵詞:交通監視系統車輛追蹤
外文關鍵詞:EntropyVehicle TrackingTraffic Monitoring System
相關次數:
  • 被引用被引用:4
  • 點閱點閱:351
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

交通壅塞是世界各國共同之問題,由於增建之道路有限,交通建設緩不濟急,塞車情況日愈嚴重,不僅造成運輸機動性低落,也付出了相當之社會成本,同時衍生了不少問題:例如能量的消耗,環境的汙染等,解決之道,歐美各先進國家的莫不採用高科技之應用,整合通訊,控制,電子與資訊等技術為基礎之智慧型運輸系統(Intelligent Transportation System)來解決,使有限之運輸資源作最有效的利用,以提高人民生活品質及經濟競爭力。
然而ITS之有效運作,有賴於正確之即時交通參數,因此交通參數之擷取為ITS之首要工作,故交通監控系統之不斷被要求改進,以獲取快速有效之交通參數。傳統使用感應線圈,紅外線,微波等偵測器,來擷取交通參數,由於成本高,維護不易;而應用影像處理與電腦視覺等技術,不僅成本低,安裝容易,且可獲得較大的區域之量測,及較多樣之資訊,除擷取傳統的交通參數外,如車流量,車速等,進一步可偵測車陣佇列,及追蹤違規車輛及快速偵測交通事故等;所以應用影像處理與電腦視覺來作交通參數之擷取,是目前智慧型運輸系統之主要技術。然而影像處理技術易受週遭光線,陰影,及遮蔽等影響,增加了處理之困難度,也是極待克服之問題。
我們以電腦視覺及影像處理之技術,從巨觀之觀點,以熵的計量作為特徵值,提出一套交通監控系統,採用由觀測點之攝影機傳送來之影像,在待測之車道上,決定偵測區。由於偵測區內主動像素分布愈廣之區域,其熵之值愈大,藉由此特性,以熵為特徵值比較不受光線變化之影嚮,同時熵之計算速度快,符合即時處理之要求,並適用各種不同之天候下。
本研究包括三個主題:主題一:我們利用熵之量測,來擷取即時之交通參數,包含車輛數目,車流,車速,及其車陣佇列等。同時利用熵之特性,提出一套有效率之背景影像之更新法,不僅結果正確,並節省不少計算時間。 主題二:為達到正確追蹤車輛之功能,我們將二值化影像中之主動像素以一長方形環繞著,以車速及車輛之明顯之前緣,來估算車輛在下一像框之位置,再以熵的值來追蹤車輛移動之軌跡;並可迅速追蹤變換車道之車輛。主題三:由於交通事故造成社會成本極大之損失,我們將待測區每一車道分割成數個小區域,行成二維細胞模型,每小區域相對模型中之一細胞,再依連續兩張影像之熵值之變化,定義每一細胞之狀態,可將複雜之多車道交通情況以動態離散系統來表之,並訂出規則來描述此模型,當違反規則,此可視為異常之事件,藉此可快速之交通事故。
本研究經一序列之實驗證實其正確性高,不僅符合即時之要求,且可達到節省經費,提高效率之目的。同時以熵值為特徵之方法,較不受光線變化之影嚮,可適用各種不同之天候下。
ABSTRACT

This dissertation discusses three major issues that are related to traffic monitoring. The underlying features used in this work are adopted all based on the entropy measurement. Entropy is a commonly measurement that can be adopted to describe the degree of disorder in thermodynamics. It is worth noting that a detection zone that has more blocks containing active pixels, its corresponding entropy will be relatively high, even though the amount of actives pixels is small. Based on this useful property, entropy-based features tolerate a wide range selection of the threshold value. Since the detection of entropy is immune to the effect of lighting condition, it can accommodate to different weather conditions, such as sunny days, cloudy days and rainy days.
The first topic discussed in this dissertation is about traffic parameter extraction. Based on an entropy measurement, a number of important traffic parameters, such as traffic flow, space mean speed and traffic queue length, can be determined in real time. On the other hand, since the accurate computation of entropy measurement depends on the distribution of active pixels, thus an efficient background updating is always required at a certain time. In order to obtain the accurate traffic parameters, we also propose a better background updating method. Instead of updating the whole background image, we must update the area of interest. As a result, the entropy value of the area of interest must be calculated frame by frame. Under these circumstances, the proposed method can save a lot of computing time and it makes some real-time applications possible.
The second topic discussed in this dissertation is to develop a new method for real-time vehicle detection and tracking. Based on a number of features, we propose a macroscopic method which is able to perform real-time tracking of moving vehicles on highway. In addition to tracking a normal car running on highway, the proposed method can also track a vehicle performing lane change. This approach consists of two phases: a detection phase and a tracking phase. In the detection phase, we use entropy-based features and the salient edges of a vehicle to check for the existence of vehicles. Then, we use a bounding box to track the targeted vehicle, and use its velocity to estimate the possible location at the next image frame. The, we perform the tracking task based on the extracted entropy features to determine the accurate location of the target vehicle. By conducting a great number of experiments, the et number of experiments, the experimental results demonstrated that the proposed system is useful.
This third issue covered in this dissertation is with regard to the automatic detection of traffic accident. We propose a 2D cellular model based on entropy-based features to describe the dynamic behavior of the freeway traffic. Using the proposed model, the complex traffic of multilane can be easily represented by a dynamic discrete system. Based on a number of important information derived from the above mentioned system, traffic incidents can be easily detected. From the experimental results, we demonstrated the efficiency as well as the effectiveness of the proposed system.
CONTENT………………………………………………………………..i
LIST OF FIGURES……………………………………………………...iii
LIST OF TABLES………………………………………………………vii

CHAPTER 1. INTRODUCTION

1.1 Overview…………………………….………………..1
1.2 Survey of Related Works……………….…………….4
1.3 Overview of the Dissertation……………….……….. 7
1.4 Contribution of the Dissertation……………….……10
1.5 Organization of the Dissertation………………….…12

CHAPTER 2. OVERVIEW OF ENTROPY

2.1 The property of Entropy……………………………..13
2.2 The Entropy Measurement…………………………..15

CHAPTER 3. REAL-TIME TRAFFIC PARAMETER EXTRACTION
USING ENTROPY

3.1 Introduction………………………………………….22
3.2 Elimination of Dynamic Shadows…………………...25
3.3 A Better Background Updating Scheme…………….28
3.4 The Proposed Method………………………………..28
3.5 Experimental Results………………………………...42
3.6 Concluding Remarks………………………………...53

CHAPTER 4. REAL-TIME VEHICLE TRACKING

4.1 Introduction………………………………………….54
4.2 The Proposed Method……………………………….55
4.3 The Vehicle Detection Phase……………………….. 56
4.4 The Vehicle Tracking Phase…………………………61
4.5 Determining the Size of a Bounding Box…………...73
4.6 Experimental Results………………………………..74
4.7 Concluding Remarks………………………………...81

CHAPTER 5. AUTOMATIC EVENT DETECTION

5.1 Introduction………………………………………….82
5.2 Incident Detection…………………………………. .84
5.3 Experimental Results………………………………...91
5.4 Concluding Remarks………………………………...92

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions…………………...……………………..94
6.2 Future Works………………………………………...96

REFERENCES………………………………………………………….98
References

[1]M. Fathy, M. Y. Siyal, “A window-based image processing technique for quantitative and qualitative analysis of road traffic parameters,” IEEE Trans. Vehicular Technology, Vol. 47, No. 4, pp.1342-1349, 1998.

[2]B. Coifman, D. Beymer, P. McLauchlan and J. Malik, “A real-time computer vision system for vehicle tracking and traffic surveillance,” Transportation Research Record Part C, Vol. 6, pp.271-288, 1998.

[3]D. J. Dailey, F. W. Cathey, and S. Pumrin, “A algorithm to estimate mean traffic speed using uncalibrated cameras,” IEEE Trans. on Intelligent Transportation System, Vol. 1, No.2, pp.98-107, June 2000.

[4]X. Li, Z.-Q. Liu and K.-M. Leung,” Detection of vehicles from traffic scenes using fuzzy integrals,” Pattern Recognition, Vol.35, pp.967-980, 2002.

[5]R. Cucchiara, M. Piccardi and P. Mello, “Image analysis and rule-based reasoning for a traffic monitoring system,” IEEE Trans. Intelligent Transportation Systems, pp.119-130, Vol. 1, No.2, Jun. 2000.

[6]G. L. Foresti, V. Murino, and C. Regazzoni, “Vehicle recognition and tracking from road image sequences,” IEEE Transactions on Vehicular Technology, Vol. 48, No. 1, pp.301-318, Jan. 1999.

[7]M. Haag and H. H. Nagel, “Tracking of complex driving manoeuvres in traffic image sequences,” Image and Vision Computing, Vol. 16, pp.517-527, 1998.

[8]N. Peterfreund, ”Robust tracking of position and velocity with kalman snake,” IEEE Transactions on Pattern analysis and Machine Intelligent, Vol. 21, pp.564-569, Jun. 1999.

[9]C. E. Smith, C. A. Richards, S. A. Brandt, and N. P. Papanikolopoulos, “Visual tracking for intelligent vehicle-highway systems,” IEEE Transactions on Vehicular Technology, Vol. 45, No. 4, pp.744-759, Nov. 1996.

[10]O. Masound, N. P. Papanikolopoulos and E. Kwon,” The use of computer vision in monitoring weaving section,” IEEE Trans. on Intelligent Transportation System, Vol. 2, No.1, pp.18-25, Mar. 2001.

[11]S. Cupte, O. Masoud and N. P. Papanikolopoulos, ”Detection and classification of vehicles,” IEEE Trans. on Intelligent Transportation System, Vol. 3, No.1, pp.37-47, Jun. 2002.

[12]Y. Iwasaki, “An Image processing system to measure vehicular queues and adaptive traffic signal control by using the information of the queues,” In Proc. of the IEEE Conference on Intelligent Transportation Systems, pp.195-200, 1998.

[13]M. Fathy, M. Y. Siyal, “Measuring traffic movements at junctions using image processing techniques,” Pattern Recognition Letters, Vol.18, pp.493-500, 1997.

[14]M. Haag and H. Nagel, “Combination of edge element and optical flow estimates for 3D-model-based vehicle tracking in traffic image sequences,” International Journal of Computer Vision, Vol. 35, No. 3, pp.295-319, 1999.

[15]M. Werner and W. V. Seelen, “Using order statistics for object tracking,” In Proc. of the First IEEE Conference on Intelligent Transportation Systems, pp.712-716, Nov. 1997.

[16]Z. Zhu, B. Yang, G. Xu, and D. Shi, “A real-time system for automatic traffic monitoring based on 2D spatio-temporal images,” In Proc. of the IEEE Workshop on Applications of Computer Vision, pp.162-167, Dec. 1996.

[17]C. Li, K. Ikeuchi, and M. Sakauchi, “Acquisition of traffic information using a video camera with 2D spatio-temporal image transformation technique,” In Proc. of the second IEEE Conference on Intelligent Transportation Systems, pp.634-637, Oct. 1999.

[18]R. Defauw, S. Lakshmanan, and K. V. Prasad, “A system for small target detection, tracking, and classfication,” In Proc. of the second IEEE Conference on Intelligent Transportation Systems, pp.639-648, Oct. 1999.

[19]D. Koller, K. Daniilidis, H. H. Hagel, “ Model-based object tracking in monocular imae sequences of road traffic scences,” International Journal of Computer Vision, Vol. 10, pp.257-281, 1993.

[20]E. Viarani, “Extraction of traffic information from images at DEIS,” in Proc. of the International Conference on Image Analysis and Processing, pp.1073-1076 1999.

[21]M. Hagg and H.-H. Nagel, “Incremental recognition of traffic situation from video image sequence,” Image and Vision Computing, Vol. 18, pp. 137-153, 2000.

[22]C. Chen, Z. Jia and P. Varaiya, “The causes and cures of highway congestion,” IEEE control system Magazine, 2001.

[23]A. Tsuge, H. Takigawa, H. Soma and K. Morisaki, “Accident vehicle automatic detection system by image processing technology,” Vehicle Navigation and Information System Conference Proceedings, pp. 45-50, 1994.

[24]H. Ikeda, T. Matsuo, Y. Kaneko and K. Tsuji, “Abnormal incident detection system employing image processing technology,” In Proc. of the second IEEE Conference on Intelligent Transportation Systems, pp. 748-752, Oct. 1999.

[25]D. V. Schroeder, An Introduction to Thermal Physics, Addison Wesley, San Francisco, USA, 2000.

[26]N. R. Pal, and S. K. Pal, “Entropy: A new definition and its applications,” IEEE Trans. System, Man and Cybernetics, Vol. 21, No. 5, pp.1260-1270, 1993.

[27]T. O. Kvalseth, “On exponential entropies,” IEEE Int. Conf. on System, Man, and Cybernetics, pp.2822-2826, 2000.

[28]W. Marshall and I. Olkin, “Inequalities: Theory of majorization and its applications,” San Diego, CA: Academic Press, 1979.

[29]Y. Iwasaki, “A measurement method of pedestrian traffic flows by use of image processing and its application to a pedestrian traffic signal control,” IEEE Int. Conf. on Intelligent Transportation Systems, pp.310-313, 1999.

[30]D. Koller, K. Daniilidis and H. H. Hagel, “Model-based object tracking in monocular image sequences of road traffic scenes,” International Journal of Computer Vision, vol.10, pp.257-281, 1993.

[31]A. Prati, I. Mikic, M. M. Trivedi, and R. Cucchiara, “Detecting moving shadows: algorithms and evaluation,” IEEE Trans. Pattern Analysis and Machine Intelligences, Vol. 25, No. 7, pp.918-923, 2003.

[32]A. Prati, P. Cucchiara, I. Mikic, and M. M. Trivedi, “Analysis and detection of shadows in video streams: A comparative evaluation,” IEEE Int. Conf. on Computer Vision and Pattern Recognition, 2001.

[33]I. Mikic, P. Cosman, G. Kogut, and M. M. Trivedi, “Moving shadow and object detection in traffic scenes,” in Proceedings of Int. Conf. on Pattern Recognition, Vol.1, pp. 321-324, 2000.

[34]A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model for background subtraction,” IEEE ICCV’99 FRAME-RATE Workshop, 1999.

[35]T. Horprasert, D. Harwood, and L. Davis, “A statistical approach for real-time robust background subtraction and shadow detection,” IEEE ICCV’99 FRAME-RATE Workshop, 1999.

[36]N. Gartner, (Eds.): “Traffic Flow Theory: A state of art report,” Transportation Research Board, 1992.

[37]O. Masoud and N. P. Papanikolopoulos, “Robust pedestrian tracking using a model-based approach,” In Proc. of the First IEEE Conference on Intelligent Transportation Systems, pp. 338-343, Nov. 1997.

[38]G. D. Sullivan, K. D. Baker, A.D. Worrall, C.I. Attwood, and P. M. Remagnino, “Model-based vehicle detection and classification using orthographic approximations,” Image and Vision Computing, Vol. 15, No. 8, pp.649-654, Aug. 1997.

[39]S. T. Tseng and K. T. Song, “Real-time image tracking for traffic monitoring,” In Proc. of the IEEE 5th International Conference on Intelligent Transportation Systems, pp.10-14, Sep. 2002.

[40]M. Ferraro, G. Boccignone and T. Caelli, “ On the Representation of Image Structures via Scale Space Entropy Conditions,” IEEE Tran. on Pattern Analysis and Machine Intelligence, Vol.21, No. 11, Nov. 1999.

[41]Y. Iwasaki, “An image processing system to measure vehicular queues and an adaptive traffic signal control by using the information of the queues,” IEEE Int. Conf. on Intelligent Transportation Systems, pp.310-313, 1998.

[42]M. Fathy, and M. Y. Siyal, “A neural-vision based approach to measure traffic queue parameters in real-time,” Pattern Recognition Letters, Vol. 20, pp.761-770, 1999.

[43]H. Mori, M. Charkari, and T. Matsushita, “On-line vehicle and pedestrian detections based on sign pattern,” IEEE Tran. on Industrial Electronics, Vol.41, No.4, 1994.

[44]E. K. Bas and J. D. Crisman, ”An easy to install camera calibration for traffic monitoring,” In Proc. of the IEEE International Conference on Intelligent Transportation Systems, pp.362-366, Nov. 1997.

[45]W. f. Gardner and D. T. Lawton, “Interactive model-based vehicle tracking,” IEEE Tran. on Pattern Analysis and Machine Intelligence, Vol.18, No. 11, Nov. 1996.

[46]M. M. Charkari and H. Mori, “A new approach for real time moving vehicle detection,” IEEE International Conference on Intelligent robots and System, pp26-30, Jul. 1993.

[47]S. M. Bozic, “Digital and Kalman Filtering,” Edward Arnold Ltd, 1981..

[48]T. N. Schoepflin, D. J. Dailey, “Dynamic camera calibration of roadside traffic management cameras,” International Conference on Intelligent Transportation Systems, pp.753-757, 2002.

[49]T. Drummond and R. Cipolla, “Real-time visual tracking of complex structures,” IEEE Tran. on Pattern Analysis and Machine Intelligence, Vol.24, No. 7, Jul. 2002.

[50]J. V. Leuven, M. B. van. Leeuwen amd F. C. A. Groen, “Real-time vehicle tracking in image sequences,” International Conference on Instrumentation and Measurement Technology, pp.2049-2054, May. 2001.

[51]J. Versavel, “Road Safety through Video Detection,” International Conference on Intelligent Transportation Systems, pp.753-757, 1999.

[52]K. Ozbay and P. Kachroo, Incident Management in Intelligent Transportation System, Artech House, 1999.

[53]H. Chen, R. Boyle and F. Montgomery, “Motorway Incident Detection Using Principal Component Analysis,” Incident Detection and Management, IEE Colloquium on, 2 Jun 1997.

[54]A. Kamijo, Y. Matsushita, K. Ikeuchi, and M. Sakauchi. “Traffic Monitoring and Accident Detection at Intersections,” IEEE Tran. on intelligent Transportation System, pp 108~118, Vol. 1, No. 2, Jun. 2000.

[55]X. Jin, D. Srinivasan and R. L. Cheu, ”Classification of Freeway Traffic Patterns for Incident Detection Using Constructive Probabilistic Neural Networks,” IEEE Tran. on Neural Networks, Vol. 11, No. 5, pp.1173~1187, Sep. 2001.

[56]M. Barth, “ Anemissions and energy comparison between a simulated automated highway system and current traffic conditions,” International Conference on Intelligent Transportation Systems, pp.358-363, 2000.

[57]K. Kaliyaperumal, S. Lakshmanan and K. Kluge, “An algorithm for detecting roads and obstacles in radar images,” IEEE Transactions on Vehicular Technology, Vol. 50, No. 1, pp.170-118, Jan. 2001.

[58]S. Wolfram, Theory and Applications of Cellular Automata, World Scientific, 1986.

[59]P. A. Vlasov, ”Cellular automata: Tendencies and results,” IEEE symposium on Neuroinformation and Neeurocomputer, Vol.2, pp1227-1230, Oct. 1992.

[60]K. Nagel, D. E. Wolf, P. Wagner and P. Simon, ”Two-lane traffic rules for cellular automatic approach,” Physical Review, E. 58, pp.425-1437, 1998.

[61]N. Nagel and M. Schreckenberg, ”A Cellular Automaton Model for Freeway Traffic,” Journal Physics. I, France 2, pp.2212-2229, 1992.

[62]A .benyoussef, N. Boccara, h. Chakib and H. E. Zahraouy, “Traffic flow in a 1D automaton model with open boundaries,” Chinese Journal of Physics, Vol. 39, no. 5, Oct. 2001.

[63]D. Chowdhury, L. Santen, and A. Schadschneider, ”Simulation of Vehicular traffic: A statistical physics Perspective,” Computing in Science and Engineering, Vol. 2, No. 5, pp.80-87, 2000.

[64]H. Xu and D. J. Dailey, “Real-Time Highway Traffic Simulation and Prediction Using Inductance Loop Data,” Proceedings of the Vehicular Navigation and Information System, pp. 194-199, 1995.

[65]J. Wahle and M. Schrenckenberg, “A multi-Agent System for on-line Simulations based on Real-World Traffic Data,” Proceedings of the 34th Hawaii Internal Conference on System Sciences, 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔