(3.233.234.235) 您好!臺灣時間:2019/11/12 08:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:謝泓火奇
研究生(外文):HUNG-CHI HSIEH
論文名稱:低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究
論文名稱(外文):Low Temperature Growth and Fabrication of Silicon-based Epitaxial Germanium Films and Silicon-based Epitaxial Germanium Buffer Gallium Arsenide Films
指導教授:張正陽張正陽引用關係
指導教授(外文):Jenq-Yang Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:材料科學與工程研究所
學門:工程學門
學類:材料工程學類
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:89
中文關鍵詞:低溫電子迴旋共振化學氣相沉積法鍺薄膜砷化鎵薄膜虛擬基板鍺光偵測器
外文關鍵詞:Low TemperatureECR-CVDGermanium FilmGallium Arsenide FilmVirtual substrateGallium Photodetector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究,使用電子迴旋共振化學氣相沉積法(ECR-CVD)在180度的低溫製備矽基鍺薄膜。矽基鍺薄膜有許多項優點,因此未來發展相當有潛力: (1) 鍺材料的電子遷移率為矽的兩倍,其能隙為0.66 eV,比起矽的能矽1.12 eV來的更小,因此相當適合發展近紅外光的光電元件; (2)矽基鍺薄膜元件比起鍺基板元件所花費的成本較低 (3)矽基鍺薄膜元件易和矽基製程整合,並達到單時積體化的目的。傳統的矽基鍺薄膜成長溫度約為400-700度,而本研究的薄膜成長溫度為180度,不但低於傳統成長溫度,對於未來元件整合於CMOS製程上更有低溫製程的優勢。
本實驗藉由改變主磁場電流、氫氣流量和工作壓力,搭配熱退火處理,探討矽基鍺薄膜的特性影響。實驗結果顯示,品質最佳的鍺薄膜X光繞射(XRD)的半高寬(FWHM)為406 arcsec;原子力顯微鏡的均方根植(RMS)為2 nm;貫穿差排密度(TDD)為107 cm-2,鍺薄膜並存在0.32%的拉伸應變。相較於大部分低溫製程團隊鍺薄膜的特性,XRD的FWHM為1000 arcsec;AFM的RMS為2-10 nm;TDD為107 cm-2,鍺薄膜平均存在0.1-0.2%的拉伸應變,我們的鍺薄膜在應變和半高寬性質上相當突出。接著我們將鍺薄膜應用於近紅外光矽基鍺光偵測器,並獲得在1310波段0.01 A/W的光響應與0.2 mA/cm2的暗電流密度。而一般期刊中矽基鍺光偵測器的暗電流密度平均都在1-10 mA/cm2左右,所以我們的暗電流比起別人低了一個級數。此外,我們將上述鍺薄膜搭配”有機金屬化學氣象沉積法”(MOCVD)與”分子束磊晶法與”(MBE),在矽基鍺薄膜上成長砷化鎵薄膜,比起傳統砷化鎵基板元件,其成本更低,也更容易與矽基系統整合與達到單石積體化。實驗上藉由改變鍺薄膜品質、改變砷化鎵薄膜厚度和使用不同成膜機台,而薄膜量測方面使用XRD、AFM、TEM、SEM和PL等設備進行分析。實驗結果顯示,品質最佳的砷化鎵薄膜XRD的FWHM為257 arcsec。
In this study, we use the electron cyclotron resonance chemical vapor deposition (ECR-CVD) to grow epitaxial germanium (Ge) thin films on single crystal silicon substrates (c-Si) and applied to the photodetector at a low temperature. Ge films grow on Si substrate has many benefit. (1)Ge has higher carrier mobility and smaller bandgap than Si. (2) Compared to a bulk Ge devices, Ge/Si devices can cost down. (3) Ge/Si devices are integrated on Si process easily. In this work, we use ECR-CVD to deposit epitaxial Ge on c-Si at a low growth temperature of 180 oC. Then, we use atomic force microscope (AFM), X-ray diffraction (XRD), and Etch pit density (EPD) to characterize the thin films properties. The result shows that the XRD full width at half maximum (FWHM) of 406 arcsec, AFM root mean square surface roughness (rms) of 2nm and EPD threading dislocations density (TDD) of 107cm-2 can be obtained when the Ge film thickness is 100 nm. After that, We fabricate a PIN Ge photodetector. The responsivity of photodetector in 1310 nm light source is 0.01 A/W at -1V and the dark current density is 0.2 mA/cm2. In addition, GaAs layers were grown by MBE and MOCVD on Ge/Si substrates. Compared to a bulk GaAs technology, this technology has great potential for use in the growth of GaAs nanoelectronic devices and optoelectronic devices on the Si substrate. The result shows that the XRD full width at half maximum (FWHM) of 257 arcsec.
目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 xii
第一章 緒論 1
1-1 前言與研究動機 1
1-2 研究目的與論文架構 2
第二章 基本原理及文獻回顧整理 3
2-1 鍺薄膜沉積機制 3
2-2 鍺材料特性 5
2-3 磊晶鍺成長技術 7
2-4 光偵測器工作原理 9
第三章 低溫製備矽基鍺磊晶層 11
3-1 諸論 11
3-1-1 鍺薄膜 11
3-1-2 鍺薄膜應力 12
3-1-3 鍺光偵測器 13
3-2 實驗 14
3-2-1 實驗步驟 14
3-2-1-1 鍺薄膜製備 14
3-2-1-2 矽基鍺光偵測器製備 15
3-2-2 製程設備 17
3-2-2-1 ECR-CVD 17
3-2-2-2快速退火爐(Arts-RTA) 19
3-2-2-3離子濺鍍機(DC Sputter) 20
3-2-2-4電子槍蒸鍍系統 (E-gun) 21
3-2-2-5 反應離子蝕刻機(Reactive-Ion Etching, RIE) 22
3-2-2-6 光罩對準曝光機 22
3-2-3 量測儀器 23
3-2-3-1 高解析度X光繞射儀(High Resolution X-Ray Diffractometer, HRXRD) 23
3-2-3-2 AFM 25
3-2-3-3橢圓偏振儀 26
3-2-3-4 Keithley2400 26
3-2-3-5 TEM 27
3-3 結果與討論 28
3-3-1 矽基板鍺薄膜的成長 28
3-3-1-1 主磁場電流之影響 28
3-3-1-2 氫氣流量之影響 32
3-4-1-3 腔體壓力之影響 35
3-4-1-4 退火實驗 37
3-4-1-5 RPCVD成長矽基鍺薄膜 39
3-4-1-5 RPCVD與ECR-CVD成長矽基鍺薄膜比較 40
3-4-1-5 EPD的測量 42
3-4-1-6 TEM觀察 42
3-4-2 鍺薄膜光偵測器 44
3-5 結論 45
第四章 矽基鍺緩衝層砷化鎵薄膜 46
4-1 諸論 46
4-3 實驗 48
4-3-1實驗步驟 48
4-3-1-1 矽基鍺緩衝砷化鎵薄膜 48
4-3-1-2 砷化鎵基板光偵測器製備 48
4-3-2 製程設備 50
4-3-2-1 MBE 50
4-3-2-2 MOCVD 51
4-3-3 測量儀器 51
4-3-3-1 PL 51
4-3-3-2 SEM 52
4-4 結果與討論 53
4-4-1 矽基鍺緩衝層砷化鎵薄膜的生長 53
4-4-1-1 XRD量測圖 53
4-4-1-3 SEM量測圖 60
4-4-1-4 PL量測圖 61
4-4-2 砷化鎵光偵測器 63
4-5 結論 64
第五章 未來展望 65
5-1 鍺薄膜 65
5-2 鍺薄膜光偵測器 65
5-2-1 I層鍺薄膜 66
5-2-2 P層鍺薄膜 66
5-2-3 透明導電膜 66
5-2-4 電極 66
5-3 砷化鎵薄膜 66
5-4 砷化鎵光偵測器 66

[1] V. Sorianello, et al, "Thermal evaporation of Ge on Si for near infrared detectors: Material and device characterization", Microelectronic Engineering 88 (2011) 526–529.
[2] A.F. Abd Rahim, M.R. Hashim, N.K. Ali, A.M. Hashim, M. Rusop, M.H. Abdullah, "The evolution of Si-capped Ge islands on Si (100) by RF magnetron sputtering and rapid thermal processing: The role of annealing times", Microelectronic Engineering 126 (2014) 134–142.
[3] Yeon-HoKil, Jong-HanYang, SukillKang, Dae-JungKim, TaeSooJeong, Chel-Jong Choi, TaekSungKim, Kyu-HwanShim, "Growth of a Ge layer on 8 in.Si (100) substrates by rapid thermal chemical vapor deposition", Materials Science in Semiconductor Processing 21 (2014) 58–65.
[4] Zhiwen Zhoua, Cheng Lia, Hongkai Laia, Songyan Chena, Jinzhong Yub, "The influence of low-temperature Ge seed layer on growth of high-quality Ge epilayer on Si(1 0 0) by ultrahigh vacuum chemical vapor deposition", Journal of Crystal Growth 310 (2008) 2508–2513.
[5] V.A. Shah, A. Dobbie, M. Myronov, D.R. Leadley, "High quality relaxed Ge layers grown directly on a Si(0 0 1) substrate", Solid-State Electronics 62 (2011) 189–194.
[6] Yuji Yamamoto, Peter Zaumseil, Tzanimir Arguirov, Martin Kittler, Bernd Tillack, "Low threading dislocation density Ge deposited on Si (1 0 0) using RPCVD", Solid-State Electronics 60 (2011) 2–6.
[7] Da Chen, Zhongying Xueb, Xing Weib, Gang Wanga, Lin Yea, Miao Zhang, Dewang Wang, Su Liua, "Ultralow temperature ramping rate of LT to HT for the growth of highquality Ge epilayer on Si (1 0 0) by RPCVD", Applied Surface Science 299 (2014) 1–5.
[8] Jifeng Liu, Rodolfo Camacho-Aguilera, Jonathan T. Bessette, Xiaochen Sun, Xiaoxin Wang, Yan Cai, Lionel C. Kimerling, Jurgen Michel, "Ge-on-Si optoelectronics," Thin Solid Films 520 (2012) 3354–3360.
[9] V. Sorianello, L. Colace, G. Assanto, A. Notargiacomo, N. Armani, F. Rossi, C. Ferrari, "Thermal evaporation of Ge on Si for near infrared detectors: Material and device characterization," Microelectronic Engineering 88 (2011) 526–529.
[10] A. Matsuda, et al., "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate," Solar Energy Materials and Solar Cells, vol. 78, pp. 3-26, Jul 2003.
[11] Y. Ishikawa and K. Wada, "Germanium for silicon photonics," Thin Solid Films, vol. 518, pp. S83-S87, Jan 1 2010.
[12] J. Michel, et al., "High-performance Ge-on-Si photodetectors," Nature Photonics, vol. 4, pp. 527-534, Aug 2010.
[13] Matteo Bosi, Giovanni Attolini, "Germanium: Epitaxy and its applications," Progress in Crystal Growth and Characterization of Materials 56 (2010) 146e174.
[14] Y. Bogumilowicz, J.M. Hartmann, C. Di Nardo, P. Holliger, A.-M. Papon, G. Rolland, T. Billon, "High-temperature growth of very high germanium content SiGe virtual substrates," Journal of Crystal Growth 290 (2006) 523–531.
[15] Da Chen, Zhongying Xue, Xing Wei, Gang Wang, Lin Ye, Miao Zhang, Dewang Wang, Su Liu," Ultralow temperature ramping rate of LT to HT for the growth of highquality Ge epilayer on Si (1 0 0) by RPCVD," Applied Surface Science 299 (2014) 1–5.
[16] J. Mantey, W. Hsu, J. James, E. U. Onyegam, S. Guchhait et al. ," Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer," Appl. Phys. Lett. 102, 192111 (2013); doi: 10.1063/1.4807500.
[17] Darin Leonhardt, Swapnadip Ghosh, SangM.Han," Defects in Ge epitaxy in trench patterned SiO2 on Si and Ge substrates ," Journal ofCrystalGrowth335(2011)62–65.
[18] V.A. Shah , A. Dobbie, M. Myronov, D.R. Leadley," High quality relaxed Ge layers grown directly on a Si(0 0 1) substrate," Solid-State Electronics 62 (2011) 189–194.
[19] Jurgen Michel, Jifeng Liu and Lionel C. Kimerling," High-performance Ge-on-Si photodetectors," PUBLISHED ONLINE: 30 JULY 2010|DOI: 10.1038/NPHOTON.2010.157.
[20] T.K.P. Luong, A. Ghrib, M.T.Dau, M.A. Zrir , M. Stoffel, V. Le Thanha, R. Daineche, T.G. Le, V. Heresanu, O. Abbes, M. Petit, M. El Kurdi, P. Boucaud, H. Rinnert, J.Murota," Molecular-beam epitaxial growth of tensile-strained and n-doped Ge/Si(001) films using a GaP decomposition source," Thin Solid Films 557 (2014) 70–75.
[21] Y.H. Tan, C.S. Tan," Growth and characterization of germanium epitaxial film on silicon (001) using reduced pressure chemical vapor deposition," Thin Solid Films 520 (2012) 2711–2716.
[22] Byongju Kim, Hyunchul Jang, Sangmo Koo, Jeong-Hoon Kim, Dae-Hyun Kim, Byoung-Gi Min , Jason S. Song , Dae-Hong Ko," Characterization of residual strain in epitaxial Ge layers grown in sub-100 nm width SiO2 trench arrays," Thin Solid Films 580 (2015) 45–51.
[23] Donghun Choi, Yangsi Ge, James S. Harris, Joel Cagnon, Susanne Stemmer," Low surface roughness and threading dislocation density Ge growth on Si (0 01) ," Journal of Crystal Growth 310 (2008) 4273–4279.
[24] Jiho Joo, Sanghoon Kim, In Gyoo Kim, Ki-Seok Jang, and Gyungock Kim," Progress in high-responsivity vertical-illumination type Ge-on-Si photodetecor operating at λ ~1.55 μm," OSA/OFC/NFOEC 2011.
[25] Jifeng Liu, Jurgen Michel, Wojciech Giziewicz, Dong Pan, Kazumi Wada et al," High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform," Appl. Phys. Lett. 87, 103501 (2005); doi: 10.1063/1.2037200.
[26] J. Schulze, M. Oehme, J. Werner," Molecular beam epitaxy grown Ge/Si pin layer sequence for photonic devices," Thin Solid Films 520 (2012) 3259–3261.
[27] M. Schmid, M. Kaschel, M. Gollhofer, M. Oehme, J. Werner, E. Kasper, J. Schulze," Franz–Keldysh effect of germanium-on-silicon p–i–n diodes within a wide temperature range," Thin Solid Films 525 (2012) 110–114.
[28] Hyeon Deok Yang, Yeon-HoKil, Jong-HanYang, Sukill Kang, Tae Soo Jeong, Chel-Jong Choi, Taek Sung Kim, Kyu-Hwan Shim," Characterization of n-Ge/i-Ge/p-Si PIN photo-diode," Materials Science in Semiconductor Processing 22 (2014) 37–43.
[29] Weixuan HU, Buwen CHENG, Chunlai XUE, Shaojian SU, Haiyun XUE, Yuhua ZUO, Qiming WANG," Ge-on-Si for Si-based integrated materials and photonic devices," Front. Optoelectron. 2012, 5(1): 41–50.
[30] N. A. DiLello, D. K. Johnstone, and J. L. Hoyt," Characterization of dark current in Ge-on-Si photodiodes ," J. Appl. Phys. 112, 054506 (2012).
[31] Dongwoo Suh, Jiho Joo, Sanghoon Kim, and Gyungock Kim," High-Speed RPCVD Ge Waveguide Photodetector," Electronics and Telecommunications Research Institute 138 Gajeongno, Yuseong-Gu, Daejeon 305-700, Republic of Korea.
[32] V. A. Shah,∗,z M. Myronov, A. Dobbie, and D. R. Leadley," Introduction of Terraces into a Reverse Linearly Graded SiGe Buffer on Si(001) Substrate and Their Effect on the Buffer’s Structural Properties," ECS Journal of Solid State Science and Technology, 2 (3) Q40-Q44 (2013).
[33] Yu Horie, Laurent D´ecosterd, Ryota Suzuki, Yasuhiko Ishikawa and
Kazumi Wada," Emission wavelength tuning by mechanical stressing of GaAs/Ge/Si microbeams ," Department of Materials Engineering, The University of Tokyo, 7-3-1, Hongo Bunkyo, Tokyo, 113-8656, Japan..
[34] N. Usami, Y. Azuma, T. Ujihara, G. Sazaki, K. Nakajima, et al., Appl. Phys. Lett. 77 (2000) 3565.
[35] J.A. Carlin, S.A. Ringel, A. Fitzgerald, M. Bulsara," High-lifetime GaAs on Si using GeSi bu!ers and its potential for space photovoltaics," Solar Energy Materials & Solar Cells 66 (2001) 621}630.
[36] Kenji MORIZANE," ANTIPHASE DOMAIN STRUCTURES IN GaP AND Gabs EPITAXIAL LAYERS GROWN ON Si AND Ge ," Journal of Crystal Growth 3 ° (1977) 249-254.
[37] S. Y. Wei1, W. C. Sun," Exploring High Efficiency Multi-junction Solar Cell – Start from Virtual Substrate Technology," 工業材料雜誌 319 2013/07 能源/儲能專欄.
[38] Donghun Choi, James S. Harris, Eunji Kim, Paul C. McIntyre, Joel Cagnon, Susanne Stemmerc," High-quality III–V semiconductor MBE growth on Ge/Si virtual substrates for metal-oxide-semiconductor device fabrication," Journal ofCrystalGrowth311(2009)1962–1971.
[39] D. Lubyshev, J. M. Fastenau, Y. Wu, W. K. Liu, M. T. Bulsara, E. A. Fitzgerald, and W. E. Hoke," Molecular beam epitaxy growth of metamorphic high electron mobility transistors and metamorphic heterojunction bipolar transistors on Ge and Ge-on-insulator/Si substrates," Journal of Vacuum Science & Technology B 26, 1115 (2008); doi: 10.1116/1.2884749.
[40] H. W. Yu, E. Y. Chang, Y. Yamamoto, B. Tillack, W. C. Wang, C. I. Kuo, Y. Y. Wong, and H. Q. Nguyen," Effect of graded-temperature arsenic prelayer on quality of GaAs on Ge/Si substrates by metalorganic vapor phase epitaxy," Applied Physics Letters 99, 171908 (2011); doi: 10.1063/1.3656737.
[41] J.Z. Li, J. Bai, J.M. Hydrick, J.S. Park, C. Major, M. Carroll, J.G. Fiorenza, A. Lochtefeld," Growth and characterization of GaAs layers on polished Ge/Si by selective aspect ratio trapping," Journal of Crystal Growth 311 (2009) 3133–3137.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔