(54.208.73.179) 您好!臺灣時間:2021/01/25 05:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:費達思
研究生(外文):Firdausy Amalina Esya
論文名稱(外文):Soluble 3,3’-bis(tetradecylthio)-2,2’-bithiophene (SBT) Derived Small Molecules for Organic Thin Film Transistor (OTFT) Application
指導教授:陳銘洲
指導教授(外文):Ming-Chou Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:71
中文關鍵詞:organic thin film transistor33’-bis(tetradecylthio)-22’-bithiophene (SBT)bithiophene (BT)thienovinylthiophene (TVT)p-type semiconductor
外文關鍵詞:organic thin film transistor33’-bis(tetradecylthio)-22’-bithiophene (SBT)bithiophene (BT)thienovinylthiophene (TVT)p-type semiconductor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:18
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

近年來噻吩衍生物在有機薄電晶體方面受到越來越多的關注,分子如果要有良好的電性表向,本身須具備良好的-作用力和有效共軛長度,因此本研究將SBT分別結合BT和TVT合成出DTVT-SBT及DbT-SBT,兩者電性皆有0.1 cm2/Vs,且有良好的穩定性,適合用在p-type 的OTFT材料。

Organic Thin Film Transistors (OTFT) based on thiophene derivative organic semiconductors, has been receiving increasing attention over the last few years. Many researches develop the most important properties which is - molecular conjugation that can achieve a high performance in organic semiconductors. The novel and promising organic semiconductor has been synthesized based on conjugated 3,3’-bis(tetradecylthio)-2,2’-bithiophene (SBT) with addition bithiophene (BT) and thienovinylthiophene (TVT) as thiophene ring to enhance the - molecular conjugation. The chemical and physical properties which were characterizing their optical, electrochemical, and thermal properties show that DTVT-SBT has a higher performance than DbT-SBT. Both of the compounds are predicted can achieve high mobility at least 0.1 cm2/Vs and good stability for p-type semiconductor in OTFT application.

Key words : organic thin film transistor,3 ,3’-bis(tetradecylthio)-2,2’-bithiophene (SBT), bithiophene (BT), thienovinylthiophene (TVT), p-type semiconductor

TABLE OF CONTENTS

ABSTRACT i
摘 要 ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
CHAPTER 1 INTRODUCTION 1
1.1. Background 1
1.2. Purpose 5
CHAPTER 2 OVERVIEW 6
2.1. Introduction of Organic Semiconductor (OSC) 6
2.2. Properties of Organic Semiconductor (OSC) 7
2.3. Basic Working Principles of Organic Semiconductor 8
2.3. Organic Semiconductor Based On Thiophene Derivatives 12
2.4. Organic Thin Film Transistor (OTFT) 14
CHAPTER 3 EXPERIMENTAL SECTION 26
3.1. Materials and Methods 26
3.1.1. Materials 26
3.1.2. Methods 27
3.1.2.1. Nuclear Magnetic Resonance (NMR) 27
3.1.2.2. Ultraviolet Visible Spectrometer (UV-vis) 27
3.1.2.3. Differential Scanning Calorimeter (DSC) 28
3.1.2.4. Thermo Gravimetric Analysis (TGA) 28
3.1.2.5. Electrochemical Analyzer – Differential Pulse Parameter (DPV) 28
3.2. Synthesis 29
3.2.1. Synthetic Scheme Route 29
3.2.1.1. DbT-SBT 30
3.2.1.2. DTVT-SBT 31
3.2.2. Synthetic of 2,5-bis(bithiophene-2-yl)-3,3’-bis(tetradecylthio)- 2,2’-bithiophene or DbT-SBT 31
3.2.2.1. 2,2’-bithiophene (1.03) 31
3.2.2.2. 3,3’,5,5’-tetrabromo-2,2’-bithiophene (1.04) 32
3.2.2.3. 3,3’-dibromo-2,2’-bithiophene (1.05) 32
3.2.2.4. tetradecylthiol (1.06) 33
3.2.2.5. 3,3’-bis(tetradecylthio)-2,2’-bithiophene (1.07) 33
3.2.2.6. 4,4’-dibromo-3,3’-bis(tetradecylthio)-2,2’-bithiophene (1.08) 34
3.2.2.7. 5-tributhylstannyl)-2,2’-bithiophene (1.09) 34
3.2.2.8. 2,5-bis(bithiophene-2-yl)-3,3’-bis(tetradecylthio)- 2,2’-bithiophene (DbT-SBT) (1.10) 34
3.2.3. Synthetic of 2,5-bis(bithienovinylthiophene-2-yl)-3,3’-bis(tetradecylthio)- 2,2’-bithiophene or DTVT-SBT 35
3.2.3.1. 5-tributhylstannyl-2,2’-thienovinylthiophene (2.02) 35
3.2.3.2. 2,5-bis(bithienovinylthiophene-2-yl)-3,3’-bis(tetradecylthio)-2,2’-bithiophene (DTVT-SBT) (2.03) 35
CHAPTER 4 RESULT AND DISCUSSION 36
4.1. Synthesis 36
4.1.1. DbT-SBT 36
4.1.2. DTVT-SBT 36
4.2. Molecular Characterization 37
4.2.1. Optical Properties 37
4.2.2. Electrochemical Properties 40
4.2.3. Thermal Properties 42
4.3. Organic Thin Film Transistor Fabrication and Characterization 44
CHAPTER 5 CONCLUSIONS 46
REFFERENCES 47
CHAPTER 6 APPENDIX 50
6.1. NMR of Synthetic DbT-SBT 50
6.2. NMR of Synthetic DTVT-SBT 55 
LIST OF FIGURES

Figure 1.1. Cost versus performance of organic and inorganic semiconductors. 2
Figure 1. 2. Chemical structure of alkyl-substituted oligothiophenes 3
Figure 1.3. Chemical structures of an oligothiophene with internal double bonds and asymmetric oligothiophene derivatives. 4
Figure 2.1. Schematic representation of a polymer chain showing examples of unsaturated () and solubilizing (sub) units 7
Figure 2.2. Scheme of the energetic levels of two isolated atom, a biatomic molecule and a solid 9
Figure 2.3. Schematic of the solution-shearing method with relevant processing parameters and information on heat supply, substrate, and shearing tool modification 11
Figure 2.4. Chemical structure of some of the well-studied p-type polymers and small molecules organic semiconductor 13
Figure 2.5. Schematic of the device configuration of OTFT 15
Figure 2.6. Top gate OTFTs : (a) TGTC and (b) TGBC structures. 16
Figure 2.7. (a) Output and (b) transfer (at Vds = - 1.5 V) characteristics of OTFTs in the TGTC ad TGBC configurations. 17
Figure 2.8. (a) Schematic structure of a field – effect transistor and applied voltages : L = channel length ; W = channel width ; Vd = drain voltage ; VTh = Threshold voltage ; Id = drain current ; (b-d) Illustrations of operating regimes of field – effect transistors : (b) linear regime ; (c) start of saturation regime at pinch – off ; (d) saturation regime and corresponding current – voltage characteristics. 19
Figure 4.1. Optical Spectra of DbT-SBT 37
Figure 4.2. Optical Spectra of DTVT-SBT 38
Figure 4.3. The comparison of optical spectra between DBT-SBT, DTVT-SBT, and DDTT-SBT 38
Figure 4.4. Example illustration a comparison of -* energy gap in a series of polyenes of increasing chain length 39
Figure 4.5. The comparison of electrochemically derived HOMO and LUMO energy level between DTVT-SBT and DbT-SBT using DPV 40
Figure 4.6. Illustration of diagram energy level from several type of alkene group 42
Figure 4.7. TGA weight loss vs temperature between DbT-SBT and DTVT-SBT 43
Figure 4.8. Bis(bithienylthiophene and alkynylthiophene oligomers 45
Figure 6.1. 2,2’-bithiophene 50
Figure 6.2. 3,3’,5,5’-tetrabromo-2,2’-bithiophene 51
Figure 6.3. 3,3’-dibromo-2,2’-bithiophene 51
Figure 6.4. Tetradecylthiol 52
Figure 6.5. 3,3’-bis(tetradecylthio)-2,2’-bithiophene 52
Figure 6.6. 4,4’-dibromo-3,3’-bis(tetradecylthio)-2,2’-bithiophene 53
Figure 6.7. 2,5-bis(bithiophene-2-yl)-3,3’-bis(tetradecylthio)- 2,2’-bithiophene (DbT-SBT) 54
Figure 6.8. 2,5-bis(bithienovinylthiophene-2-yl)-3,3’-bis(tetradecylthio)-2,2’-bithiophene (DTVT-SBT) 55









LIST OF TABLES

Table 3.1. Material Description of CAS NO 26
Tabel 4.1. Optical and electrochemical comparison of DTVT-SBT and DbT-SBT compounds
41
Table 4.2. The comparison of thermal properties of DbT-SBT and DTVT-SBT 44

Afzali, A. B. 2002. An Efficient Synthesis of Symmetrical Oligothiophenes : Synthesis and Transport Properties of A Soluble Sexithiophene Derivative. Chemistry Material , 1742-1746.
Bao, Z. A. 2007. Organic Field-Effect Transistors. London: CRC Press Taylor and Francis Group.
Brusso, J. L. 2008. Two-Dimensional Structural Motif in Thienoacene Semiconductors: Synthesis, Structure, and Properties of Tetrathienoanthracene Isomers. Chemistry of Materials , 2484.
Cinar, M. E. 2015. Thienothiophenes, Dithienothiophenes, and Thienoacenes: Syntheses, Oligomers, Polymers, and Properties. Chemical Review , 3036-3140.
Dimitrakopoulos, C. E. 1997. Trans-trans-2,5-bis[2-[5-(2,2'-bithienyl)[ethenyl]thiophene : Synthesis, characterization, thin film deposition and fabrication of organic field-effect transistors. Syn. Met. , 193-197.
Doi, I. K. 2012. High mobility organic thin-film transistors on plastic substrate. Current Applied Physic , 32-35.
Dong, H. W. 2010. High performance organic semiconductors for field-effect transistors. Chemical Communications , 5211.
Facchetti, A. 2011. π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Application. Chemistry of Materials Review , 733-758.
Farchioni, R. A. 2001. Organic Electronic Materials : Conjugated Polymers and Low Molecular Weight Organic Solids. New York: Springer-Verlag Berlin Heidelberg.
Fu, Y. L. 2009. High field-effect mobility from poly (3-hexylthiophene) thin-film transistors by solvent–vapor-induced reflow. Organic Electronic , 883-888.
Garnier, F. E. 1998. Dihexylquaterthiophene, a two dimensional liquid crystal-like organic semiconductor with high transport properties. Chemistry Material , 3334-3339.
Gsänger, M. K. 2014. High-Performance Organic Thin-Film Transistors of J Stacked Squaraine Dyes. Journal of The American Chemical Society , 2351-2362.
Gupta, D. K. 2009. An analysis of the difference in behavior of top and bottom contact organic thin film transistors using device simulation. Organic Electronic , 775-784.
Halik, M. K. 2003. Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors. Advanced Materials , 917.
Hamadani, B. 2007. Electronic Charge Injection and Transport in Organic Field-Effect Transistors. Houston, Texas: Rice University.
Kano, M. M. 2011. Control of device parameters by active layer thickness in organic thin film transistors. Journal of Applied Physics , 073307-1–073307-3.
Klauk, H. U. 2007. Low voltage organic thin film transistors with large transconductance. Journal of Applied Physic , 074514-1–074514-7.
Kumar, B. B. 2014. Organic Thin Film Transistors : Structures, Models, Materials, Fabrication, and Applications: A Review. Polymer Reviews , 33-111.
Li, J. Q.-P. 2008. High-Performance Thin-Film Transistors from Solution-Processed Dithienothiophene Polymer Semiconductor Nanoparticles. Chemistry of Materials , 2057.
Liu, R. L. 2010. Low-operating-voltage polymer thin-film transistors based on poly (3-hexylthiophene) with hafnium oxide as the gate dielectric. IEEE Transactions on Device and Materials Reliability , 233-237.
Marinov, O. D. 2009. Organic thin film transistors: Part I. IEEE Trans. Electron Devices , 2952–2961.
McKinnon, M. 2014. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). London: University of Maryland.
Nelson, D. J. 2001. Correlation of Relative Rates of PdCl2 Oxidation of Functionalized Acyclic Alkenes versus Alkene Ionization Potentials, HOMOs, and LUMOs. Journal of American Chemical Society , 1564-1568.
Ortiz, R. P. 2010. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chemical Review , 205-239.
Qiao, Y. W.-L. 2012. Synthesis, experimental and theoretical characterization, and field-effect transistor properties of a new class of dibenzothiophene derivatives: From linear to cyclic architectures. Journal of Materials Chemistry , 1313.
Shekar, B. C. 2004. Organic thin film transistors: Materials, processes, and devices. Korean Journal Chemistry of Engineering , 267-285.
Sichina, W. 2007. Characterization of Polymers Using TGA. New York: Perkin Elmer Instruments.
Someya, T. E 2002. Vapor sensing with alpha, omega-dihexylquarterthiophene field effect transistor substrates. Chemistry Material , 3079 - 3081.
Stella, M. 2009, December. Study of Organic Semiconductor for Device Application. Barcelona.
Zaumseil, J. A. 2007. Electron and Ambipolar Transport in Organic Field-Effect Transistors. Chemical Review , 1296-1323.


電子全文 電子全文(網際網路公開日期:20210701)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔