跳到主要內容

臺灣博碩士論文加值系統

(35.172.111.71) 您好!臺灣時間:2022/05/23 10:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賈魯強
研究生(外文):Lu-Chiang Chia
論文名稱:顆粒體複雜流動之研究
論文名稱(外文):Complex Flows of Granular Materials
指導教授:黎璧賢黎璧賢引用關係
指導教授(外文):Pik-Yin Lai
學位類別:博士
校院名稱:國立中央大學
系所名稱:物理與天文研究所
學門:自然科學學門
學類:天文及太空科學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:140
中文關鍵詞:顆粒體粒子流沙堆模型
外文關鍵詞:Granular materialsGranular flowSOCSandpile
相關次數:
  • 被引用被引用:0
  • 點閱點閱:351
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
顆粒體在日常生活中是四處可見的,諸如:食鹽,糖,咖啡,粉末,沙和煤等等。 顆粒體雖然也是由普通的物質所構成的,但是在某些方面顆粒體的行為與一般的氣體,液體或固體的性質完全不同。在這篇論文,我們主要是分別在實驗和理論上探討顆粒體複的雜流動現象。
在最近幾年,顆粒體分離現象被發現在二維旋轉圓盤和三維旋轉柱體之中。在第二章中 ,我們建構了一個二維的模型來研究在二維圓盤中的分離現象。我們考慮顆粒體置放在一個繞著中心點選轉的二維晶格之中。 而主要的假設是在表層的顆粒會產生崩塌, 而在顆粒內層中的運動是伴隨著圓盤轉動 。
事實上許多工廠利用振動粉末來當作一個製造的過程。最近, 許多顆粒體在垂直地顫動的研究是十分地任人感興趣。而沙堆形成是在顫動的系統的模式形成之一。在第三章,我們描述動態堆形成並且也建構了一個模型。成功的描述了振動時的堆積過程。
在河邊和高山,常常可以發現山崩的發生。然而不管山崩的實際的重要性,但是我們對這些山崩的性質卻並不是十分瞭解。所以在第四章中,我們針對山崩問題做了一系列的研究,藉以試圖瞭解山崩的性質。 我們發現在崩塌的過程中可以發現有2 個特徵的角度來描述一崩潰的形狀。
Granular materials are very common in everyday life: salt, sugar, coffee, powder, sand and coal etc .
They are made of common substances but in some way their behavior is completely different from what we can see in homogeneous gases, liquids or solids.
In this thesis, we report on both experimental and theoretical investigation of flow of granular materials.
Recently, the phenomenon of particle segregation was found in both two dimensional rotating drum and three dimensional rotating cylinder.
In Chapter 2, "FRICTION-INDUCED SEGREGATION", we propose a model of two dimensional rotating drum which reproduces the phenomenon of radial segregation.
It is a simple algorithm for simulation of rotating drum. We considered a rectangular lattice forming bands moving around central point.
The main assumption is that the system takes place in the avalanches at the surface, whereas the motion of the grains in the bulk are equally adverted by the bulk flow.
In fact many practical industrial situations involve the vibration of powders and granulates as an important part of a fabrication process.
Recently, many attentions are focused on the study of granular materials lying on a vertically vibrating surface.
The heap formation is one of pattern formations in the vibrating system.
In Chapter 3, "HEAP FORMATION IN VERTICALLY VIBRATING GRAINS", we describe dynamic of heap formation and also construct a model to simulate heap formation using cellular automata.
In the landslide close to rivers, the collapses of nearby slopes are mainly due to the versions of the river bed.
Despite the practical importance of these avalanches, very little is known about the properties of these avalanches.
In Chapter 4, "AVALANCHES FROM A COLLAPSING GRANULAR PILE", we report of an experimental
investigation of the statistical properties of these type of avalanches.
It is found that two angles of repose are needed to describe the shape of a collapsing granular pile.
封面
Prologue
1 Basic Concepts
1.1 Properties of Granular Materials
1.2 Some Phenomena of Granular Materials
1.2.1 Force Propagation
1.2.2 Shear flow
1.2.3 Free-Surface Flow
1.2.4 Jamming Problem in the Conical Hopper
1.3 Vibration of Granular Materials
1.3.1 Heap Formation and Convection Rolls
1.3.2 Surface Patterns
1.3.3 Segregation and Mixing
1.4 Segregation of Rotating Drum
1.4.1 Flow Induced Segregation
1.4.2 Axial Segregation in Rotating Cylinders
1.5 Simple Theories for Granular Systems 1.5.1 Janssen''s Original analysis
1.5.1 Janssen''s Original analysis
1.5.2 A Phenomenological Model for Surface Flows
1.6 Sandpile Model and Self-Organized Criticality
1.7 Monte-Carlo Simulation
2 Friction-Induced Segregation
2.1 Introduction
2.2 Dynamical Model for Segregation
2.3 Result of the Simulation
2.4 Critical Phenomenon
2.5 Extension to Rotating Cylinder and Stratification Experiments
2.6 Conclusion and Outlook
3 Heap Formation in Vertically Vibrating Grains
3.1 Intoduction
3.2 Model and simulation Method
3.3 Results from the Simulations
3.4 Contiunnm Model
3.5 The Heap Equation
3.6 Structures of Steaady Heaps
3.6.1 Linear Model
3.6.2 The Nonlinear Model
3.6.3 Effect of Absolute System Size: Scaled Heaping Profiles
3.7 Dynamics of Heap Formation
3.8 Comparison wiht Experiments
3.9 Discussion
4 Avalanches from a Collapsng Granular Pile
4.1 Introduction
4.2 The Basic Experimental setup
4.2.1 Experimental Procedure
4.3 Results for Different Types of Grain and System Sizes
4.4 Dynamics of a Collapsing Pile
4.5 Conclusion
5 Summary and Final Remarks
5.1 Summary
5.2 Ideas for Future Work
A Heap formation
B Explanation of tracking macros
\bibitem{Abu-zaid93} S. Abu-Zaid and G. Ahmadi, Powder Technol. {\bf 77}, p7, 1993
%keyword ={}\ \bibitem{Faraday31} M. Faraday, Trans. R. Soc. London {\bf 52}, 299
(1831)
\bibitem{Robert84} I. Roberts, Proc. Roy. Soc. {\bf 36}, 226, (1884)
\bibitem{Janssen} H. A. Janssen, Z. Vereins Deutsch Ing. {\bf 39}, 1045 (1895)
\bibitem{Bak87} P. Bak., C. Tang and K. Wiesenfeld
Phys. Rev. Lett. {\bf 59}, 381 (1987); Phys. Rev. A {\bf 38}, 364
(1988)
\bibitem{Nagel96} H. M. Jaeger, S. R. Nagel, and R. P. Behringer,
Rev. Mod. Phys. {\bf 68}, 1259 (1996)
\bibitem{Brennen85} C. S. Campbell and C. E. Brennen. J. Fluid Mech. {\bf 151}, 167 (1985)
\bibitem{Grest91} P. A. Thompson and G. S. Grest, Phys. Rev. Lett., {\bf 67}, 1751 (1991)
\bibitem{Bideau93} {\it Disorder and Granular Media}, edited
by D. Bideau and A. Hansen(North-Holland, Amsterdam, 1993)
%\bibitem{Beveloo61} Beveloo61
\bibitem{To01} K.Y. To , P.-Y. Lai and H. K. Pak, Phys. Rev. Lett., {\bf 86}, 71(2001)
\bibitem{Goldhirsch93} I. Goldhirsch and G. Zanetti, Phys. Rev. Lett., {\bf 70},1619 (1993)
\bibitem{Jaeger92} H. M. Jaeger and S.R. Nagel, Science
{\bf 255}, 1523 (1992)
\bibitem{Clement92} E. Cl\''ement, J. Duran and J. Rajchenbach,
Phys. Rev. Lett. {\bf 69}, 1189 (1992)
\bibitem{Fauve89} C. Laroche, S. Douady and S. Fauve, J. Phys. (Paris) {\bf 50}, 699 (1989)
\bibitem{Laroche} C. Laroche, S. Douady and S. Fauve, J. Phys. (Paris) {\bf 50}, 699 (1989)
\bibitem{Hong92} H. S. Caram and D. C. Hong, Mod. Phys. Lett.,
{\bf 6}, 761 (1992)
\bibitem{Jullien93} R. Jullien, P. Meakin and A. Pavlovitch,
Europhys. Lett. {\bf 22}, pp523-528 (1993)
\bibitem{Hong95} H. Hayakawa, S.Yue and D. C. Hong, Phys. Rev.
Lett. {\bf 75}, 2328 (1995)
\bibitem{Shinbrot97} T. Shinbrot, D. Khakhar, J. J. McCarthy and
J. M. Ottino, Phys. Rev. Lett. {\bf 79}, 829 (1997)
\bibitem{Pak95} H. K. Pak and P. R. Behringer, Nature {\bf
371}, 231 (1994);H. K. Pak, E. Van Doorn and R. P. Behringer,
Phys. Rev. Lett. {\bf 74}, 4643 (1995)
\bibitem{Aoki96} K. M. Aoki, T. Akiyama, Y. Maki and T. Watanabe,
Phys. Rev. E, {\bf 54}, 874 (1996); K. M. Aoki, T. Akiyama, K.
Yamamoto and T. Yoshikawa, Europhys. Lett., {\bf 40}, 159 (1997)
\bibitem{Gallas92} J. A. C. Gallas, H. J. Herrmann and S.
Sokolowski, Phys. Rev. Lett. {\bf 69}, 1371 (1992)
\bibitem{Taguchi92} Y.-h. Taguchi, Phys. Rev. Lett. {\bf 69}, 1367
(1992)
\bibitem{Walker82} J. Walker, Sci. Am., {\bf 247}, 166 (1982)
\bibitem{Melo94} F. Melo, P. Umbanhowar and H. L. Swinney, Phys. Rev.
Lett. {\bf 72}, 172 (1994); Phys. Rev. Lett. {\bf 75}, 3838 (1995)
\bibitem{Swinney96} P. Umbanhowar, F. Melo and H. L. Swinney, Nature, {\bf 382}, 793 (1996)
\bibitem{Bizon98} C. Bizon, M. D. Shattuck, J. B. Sqift, W. D. McCormick and H. L. Swinney, Phys. Rev.
Lett. {\bf 80}, 57 (1998)
\bibitem{Rosato87} A. Rosato, K. J. Strandburg, F. Prinz
and R. Swendsen, Phys. Rev. Lett. {\bf 58}, 1038 (1987)
\bibitem{Behringer95} R. P. Behringer, Nature {\bf 374}, 15
(1995)
\bibitem{Catelaube95} F. Cantelaube and D. Bideau, Europhys. Lett.
{\bf 30}, 133 (1995)
\bibitem{Hill94} K. M. Hill and J. Kakalios, Phys. Rev. E {\bf 49},
R3610 (1994)
\bibitem{Knight93} J.B. Knight, H. M. Jaeger and S.R. Nagel,
Phys. Rev. Lett. {\bf 70}, 3728 (1993)
\bibitem{Meakin90} R. Jullien and P. Meakin, Nature {\bf 344},425 (1990)
\bibitem{Metcalfe95} G. Metcalfe, T. Shinbrot, J.J. McCarthy and
J. M. Ottino, Nature {\bf 374}, 39 (1995)
\bibitem{Nityanand86} N. Nityanand {\it et al}, Phys. Rev. Lett., {\bf 82}, 916 (1986)
\bibitem{Clement95} E. Cl\''ement, J. Rajchenbach and J. Duran, Europhys.
Lett. {\bf 30}, 7 (1995)
\bibitem{Ristow94} G. H. Ristow, Europhys. Lett., {\bf 28}, 97 (1994)
\bibitem{Ristow97} G. H. Ristow, Europhys. Lett., {\bf 40}, 625 (1997)
\bibitem{Donald62} M. B. Donald and B. Roseman, Br. Chem. Eng. {\bf 7}, 749 (1962)
\bibitem{Hill95} K. M. Hill and J. Kakalios, Phys. Rev. E {\bf 52},
4393 (1995)
\bibitem{Hill97} K. M. Hill, A. Caprihan and J. Kakalios, Phys. Rev.
Lett. {\bf 78}, 50 (1997)
\bibitem{Nedderman92} R. M. Nedderman,
{\it Statics and kinematics of granular materials}, (Cambridge, 1992)
\bibitem{de geness98} T. Boutreux, E. Raphael and P.-G. de Geness, Phy. Rev. E, {\bf 58}, 4692 (1998)
\bibitem{Held90} G. A. Held et al,
Phys. Rev. Lett., {\bf 65}, 1120 (1990)
%Experimental Study of Critical-Mass Fluctuations in an Evolving Sandpile
\bibitem{Allen87} M. P. Allen and D. J. Tildesley, {\it Computer Simulation of Liquids}. (Oxford University Press, Oxford. 1995)
\bibitem{Rosato86} A. D. Rosato, F. Prinz, K. J. Strandburg and R. H. Swendsen,
Powder Technol. {\bf 49}, 59 (1986)
\bibitem{Baumann94} G. Baumann, I. Janosi and D. E. Wolf,
Europhys. Lett. {\bf 27}, 203 (1994)
\bibitem{Daw95} C. S. Daw, E. J. Kostelich, C. Grebogi, E. Ott
and J. A. Yorke, Phys. Rev. Lett. {\bf 75}, 2308 (1995)
\bibitem{Zik94} O. Zik, D. Levine, S.G. Lipson, S. Shtrikman
and J. Stavans, Phys. Rev. Lett. {\bf 73}, 644 (1994)
\bibitem{Lai97} P. Y. Lai, L.-C. Jia and C. K. Chan, Phys. Rev.
Lett. {\bf 79}, 4994 (1997); L.-C. Jia, P. Y. Lai and C. K. Chan,
Chin. J. Phys. {\bf 36}, 659 (1998)
\bibitem{Binder89} J.-S. Wang, K. Binder and J. L. Lebowitz,
J. Stat. Phys. {\bf 56}, 783 (1989);
K.-t. Leung, Phys. Rev. Lett. {\bf 66}, 453 (1991)
\bibitem{Binder92} K. Binder and D. W. Heermann in
{\it Monte Carlo Simulation in Statistical
Physics, An Introduction}, 2nd edition, (Springer, Berlin 1992)
\bibitem{Rajchenbach89} P. Evesque and J. Rajchenbach, Phys. Rev. Lett.
{\bf 62}, 44 (1989)
\bibitem{Pomeau77} C. Normand, Y. Pomeau and M. G. Velarde, Rev.
Mod. Phys. {\bf 49}, 581 (1977)
\bibitem{Moreau} J. J. Moreau, in {\it Powders and Grains 93},
edited by C. Thornton (A. A. Balkema, Rotterdam 1993)
\bibitem{Knight96} J. B. Knight, E. E. Ehrichs, V. Yu.
Kuperman, J. K. Flint, H. M. Jaeger and S. R. Nagel,
Phys. Rev. E {\bf 54}, 5726 (1996)
\bibitem{Knight97} J. B. Knight,
Phys. Rev. E {\bf 55}, 6016 (1997)
%\bibitem{Lai99} P. Y. Lai, L.C. Jia and C.K. Chan, Phys. Rev. E, {\bf 61}, 5593 (2000)
\bibitem{Hsiau98} S. S. Hsiau and S. J. Pan, Powder Tech.
{\bf 96}, 219 (1998)
\bibitem{Knight93} J. B. Knight, H. M. Jaeger and S. R. Nagel,
Phys. Rev. Lett. {\bf 70}, 3728 (1993)
\bibitem{Shinbrot98} T. Shinbrot, and F. J. Muzzio, Phys. Rev. Lett. {\bf 81}, 4365 (1998)
\bibitem{Pak93} H. K. Pak and P. R. Behringer, Phys. Rev. Lett.
{\bf 71}, 1832 (1993); Nature {\bf
371}, 231 (1994)
\bibitem{Jia} L. C. Jia, P. Y. Lai and C. K. Chan,
Phys. Rev. Lett. {\bf 83}, 3832 (1999)
\bibitem{Stegun} M. Abramowitz and I. A. Stegun, {\it Handbook of Mathematical Functions}
(Dover 1965)
\bibitem{Lai00} P. Y. Lai, L. C. Jia and C. K. Chan, Phys. Rev. E {\bf 61},(2000)
\bibitem{Zhang} T. Halpin-Healy and Y.-C. Zhang, Phys. Rep.
{\bf 254}, 189 (1995)
\bibitem{Bretz92} M. Bretz, J. B. Chunningham, P. L. Kurczynski and F. Nori,
Phys. Rev. Lett., {\bf 69}, 2431 (1992)
%Imaging of Avalanches in Granular Materials
\bibitem{Baxter89} G. W. Baxter and R. P. Behringer,
Phys. Rev. Lett. {\bf 62}, 2825 (1989)
\bibitem{Boutreux96} T. Boutreux, P. G. de\ Gennes, J. Phys. {\bf 6}, 1295 (1996)
\bibitem{Choo} K. Choo, T. C. A. Molteno and S. W. Morris,
Phys. Rev. Lett. {\bf 79}, 2975 (1997)
\bibitem{Duran94} J. Duran, T. Magozi, E. Clement and J.
Rajchenbach, Phys. Rev. E {\bf 50}, 5138 (1994); J. Duran, T.
Mazozi, E. Clement and J. Rajchenbach, Phys. Rev. E {\bf 50}, 3092
(1994)
\bibitem{Frette93} V. Frette,
Phys. Rev. Lett., {\bf 70}, 2762 (1993)
%Sandpile Models with Dynamically Varying Critical Slopes
\bibitem{Frette96} V. Frette and K. Christensen et al,
Nature, {\bf 379}, 49 (1996),
%Avalanche dynamics in a pile of rice
Phys. Rev. Lett., {\bf 77}, 107 (1996)
%Tracer Dispersion in a Self-Organized Critical System
\bibitem{Head97} D. A. Head and G. J. Rodgers,
Phys. Rev. E, {\bf 56}, 1976 (1997)
%Slowly driven sandpile formation with granular mixtures
%\bibitem{Hsiau98} S. S. Hsiau and S. J. Pan, Powder Tech.
%{\bf 96}, 219 (1998)
\bibitem{HerrmannBook} H. J. Hermann, J.-P. Hovi, S. Luding, {\it Physics of Dry Granular Media}, (1998)
\bibitem{Makse97} H. A. Makse, S. Havlin, P. R. King and H.E.
Stanley, Nature {\bf 386}, 379 (1997).
\bibitem{Yanagita99} T. Yanagita, Phys. Rev. Lett. {\bf 82}, 3488 (1999)
\bibitem{Nagel89} H. M. Jaeger, C.-h. Liu and S. R. Nagel,
Phys. Rev. Lett., {\bf 62}, 40 (1989)
%Relaxation at the Angle of Repose
\bibitem{Noever93} David A. Noever, Phys. Rev. E, {\bf 47}, 724 (1993)
\bibitem{Ristow96} G.H. Ristow, Europhys. Lett. {\bf 34}, 263 (1996)
\bibitem{Lai93} P.-Y. Lai, Chin. J. Phys., {\bf 33}, 271 (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top