(3.216.79.60) 您好!臺灣時間:2020/11/28 17:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴附佑
研究生(外文):Fu-yu Lai
論文名稱:熱風循環烘箱熱傳特性研究
論文名稱(外文):Heat Transfer Characteristics of a Hot Recirculating Oven
指導教授:曾重仁
學位類別:碩士
校院名稱:國立中央大學
系所名稱:能源工程研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:75
中文關鍵詞:熱風循環烘箱均溫性標準k-ε模型
外文關鍵詞:hot recirculating ovenuniform temperaturek-ε model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要籍由基本熱傳遞學,來探討一個三維、紊流、穩態的熱風循環烘箱,其腔內空間均溫性的數值模擬。其中紊流模式採用標準k-ε模型。數值計算主要分為兩部分,第一部分為模型物理幾何參數不變,改變烘箱元件之參數,如電熱器瓦數、風扇流量及隔熱材k值,第二部分為改變模型物理幾何參數,如熱風入口板上的數量及位置、隔熱材的厚度。
熱風循環烘箱主要運作方式為烘箱內有一風扇,其主要將電熱器室內之工作流體送至濾棉(HEPA)過濾整流後,再經由沖孔板上之孔洞送至烘箱物件烘烤區,最後再回到電熱器室內再被風扇所吸入排出,以完成一整個熱風循環。
第一部分研究結果顯示烘箱物件烘烤區之平均溫度隨著電熱器瓦數的增加而提高,而風扇流量增加及隔熱材k值的增大,都會使得烘箱物件烘烤區之平均溫度下降。
第二部分研究結果可發現到對於此機台沖孔板上較合適的數量為48個,此時烘箱物件烘烤區之平均溫度為所需求的範圍內;而孔洞位置的分布,從結果可看出不適合於沖孔板上半部之位置開洞,以避免工作流體溫度過高;從隔熱材厚度來看,越厚越能使得烘箱物件烘烤區內之能量較不容易散失出去,故可以令我們將電熱器瓦數降低,已達到節能之目的。
The flow and heat transfer characteristics of a hot recirculating oven are studied. Three-dimensional, steady, turbulent flow is simulated using a k-εmodel to study the temperature distribution with the chamber of the oven. The numerical results can be divided into two parts. For the first part, the geometry parameters of the model are fixed and we change the conditions of the component of the oven. For example, power of electric heater, flow rate of fan and thermal conductivity of insulator. In the second part, we change the geometry parameters of the model and the conditions of the component of the oven are fixed. For example, change the hole numbers or position of a plate and the thickness of insulator.
Results show that the mean temperature of chamber of the oven are raised by increasing power of the electric heater. When the flow rate of the fan or the thermal conductivity of the insulator are increased, the mean temperature of chamber is decreased.
For the second part, we find that the 48 holes on the plate are suitable for the oven, and the mean temperature of the chamber reach the target value. The inlet holes should not be placed in the upper part of the inlet plate. Because this would increase the mean temperature of the chamber to higher than the target value. Using thicker insulation reduces the hat loss, and thus increases the mean temperature and saves energy input.
目錄
摘要 iii
ABSTRACT iv
誌謝 vi
目錄 vii
圖目錄 ix
表目錄 xiv
符號表 xv
第一章 緒論 1
1.1 前言 1
1.2 熱風循環烘箱結構與熱傳遞理論 2
1.3 文獻回顧 5
1.4 研究動機 11
第二章 理論分析 14
2.1 物理模型與基本假設 14
2.2 統御方程式 16
2.3 邊界條件 20
第三章 數值方法 24
3.1 理論模式與數值演算方法 24
3.2 有限體積法 25
3.3 交錯式網格 28
3.4 壓力修正方程式 29
3.5 SIMPLE法的演算程序 31
3.6 格點測試及程式驗証 31
第四章 結果與討論 40
4.1 基本模型之熱流特性 40
4.2 電熱器瓦數之影響 41
4.3 風扇流量之影響 43
4.4 隔熱材k值之影響 44
4.5 沖孔板上孔洞數量的變化 45
4.6 沖孔板上孔洞數量固定、位置的變化 47
4.7 隔熱材厚度的影響 49
第五章 結論與建議 73
5.1 結論 73
5.2 未來研究方向與建議 74
參考文獻 75
1.F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley and Sons, New York, 1996

2.N. C. Markatos and K. A. Pericleous,“Laminar and Turbulent Natural Convection in an Enclosed Cavity,”International Journal Heat Mass Transfer, Vol. 27, pp. 755-772, 1984

3.E. Papanicolaou and Y. Jaluria,“Mixed Convection from An Isolated Heat Source in a Rectangular Enclosure,”Numerical Heat Transfer, Part A, Vol. 18, pp. 427-461, 1990

4.N. Rudraiah and G. N. Sekhar,“Convection in Magnetic Fluids With Internal Heat Generation,”Journal of Heat Transfer, Vol. 113, pp. 122-127, 1991

5.T. Fusegi, J. M. Hyun, K. Kuwahara,“Natural Convection in a Defferentially Heated Square Cavity with Internal Heat Generation,”Numerical Heat Transfer, Part A, Vol. 21, pp. 215-229, 1992

6.N. I. Steinberg,“Design an Efficient Air Impingement Nozzle Array,”Chemical Engineering Prog., No. 52, 1995

7.J. Y. Oh, M. Y. Ha, K. C. Kim,“Numerical study of heat transfer and flow of natural convection in an enclosure with a heat-generating conducting body, ”Numerical Heat Transfer, Part A, Vol. 31, pp. 289-303, 1997

8.V. G. Ryckaert, J. E. Claes, J. F. Van Impe,“Model-based temperature control in ovens,”Journal of Food Engineering, Vol. 39, pp. 47-58, 1999

9.T. H. Hsu and S. G. Wang,“Mixed Convection in a Rectangular Enclosure with Discrete Heat Sources,”Numerical Heat Transfer, Part A, vol 38, pp. 627-652, 2000

10.Pieter Verboven, Nico Scheerlinck, Josse De Baerdemaeker, Bart M. Nicolae,“Computational fluid dynamics modeling and validation of the isothermal airflow in a forced convection oven,”Journal of Food Engineering, vol 43, pp. 41-53, 2000

11.M. Y. Ha and M. J. Jung,“A numerical study on three-dimensional conjugate heat transfer of natural convection and conduction in a differentially heated cubic enclosure with a heat-generating cubic conducting body,”International Journal of Heat and Mass Transfer, Vol. 43, pp. 4229-4248, 2000

12.S. Z. Shuja, M. O. Iqbal, B. S. Yilbas,“Natural convection in a square cavity due to a protruding body - aspect ratio consideration,”Heat and Mass Transfer, vol 37, pp.361-369, 2001

13.S. M. Saeidi and J. M. Khodadadi,“Forced convection in a square cavity with inlet and putlet ports,”International Journal of Heat and Mass Transfer, vol 49, pp. 1896-1906, 2006

14.Salah A. Eltief, M. H. Ruslan, B. Yatim,“Drying Chamber Performance of V-groove Forced Convection Solar Dryer,”Desalination, vol 209, pp. 151-155, 2007

15.林峰彬, 碩士論文,“狹縫噴嘴式烘箱之設計分析與實驗觀察”, 國立清華大學, 中華民國台灣, 1994

16.郭慶榮, 碩士論文,“狹縫噴嘴式烘箱之實驗與理論分析”, 國立清華大學, 中華民國台灣, 1996

17.葉玉瓊, 碩士論文,“狹縫噴嘴式烘箱內之輸送現象”, 國立清華大學, 中華民國台灣, 1998

18.K. J. McNaughton and C. G. Sincair,“Submerged Jets in Short Cylindrical Flow Vessels,”J. Fluid Mech., Vol. 186, no.52, pp. 635-644, 1972

19.Mouson, Young, Okiishi, Fundamental of Fluid Mechanics, John Willey and Sons, New York, 1998

20.P. H. Oosthuizen and David Naylor,“An Introduction to Convection Heat Transfer Analysis,”McGraw-Hill, New York

21.Flomerics,“FLOTHERM version 6.1 – User’s Guide,”Flomerics, England

22.W. Rodi,“Influence of Buoyancy and Rotation on Equations for Turbulent Length Scale,”Proceeding 2nd Symposium On Turbulent Shear Flows, 1979

23.B. E. Lauder and D. B. Spalding,“The Numerical Computation of Turbulent Flow,”Computing Method In Applied Mechanics & Engineering, Vol. 3, pp. 269, 1974

24.E. Tahry and H. Sherif,“Equation for Compressible Reciprocating Engine Flows,”AIAA Journal of Energy, Vol. 7, pp.345-353, 1983

25.F. Moukalled and M. Darwish,“A comparative assessment of the performance of mass conservation-based algorithms for incompressible multiphasw flows,”Numerical Heat Transfer, Part B:Fundamentals, vol 42, n 3, pp. 259-283, 2002

26.S. V. Patankar ,“Numerical Heat Transfer and Fluid Flows,”Hemisphere Publishing Corporation, 1980
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔