跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 14:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙冠翔
研究生(外文):CHAO KUAN
論文名稱:塗佈奈米銀p型矽(100)在NH4F/H2O2水溶液中之電化學蝕刻行為
論文名稱(外文):Electrochemical etch of p-Si(100) dispersed with nano-Ag particles in the NH4F/H2O2 solution
指導教授:林景崎
指導教授(外文):Lin, Jing-Chie
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所碩士在職專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:130
中文關鍵詞:p-型(100)矽單晶電化學蝕刻氟化銨
外文關鍵詞:p-type(100) siliconelectrochemical etchingammo
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之內容主要探討奈米銀顆粒塗佈於p-型矽(100)單晶上,
在含氟化銨(Ammonium fluoride, NH4F)和過氧化氫(hydrogen peroxide,
H2O2)的混合溶液中,經電化學蝕刻後的孔洞形貌特性研究。蝕刻步
驟先採用陽極動態極化法,在混合溶液中定義出適當之蝕刻電位,以
利進行定電位蝕刻,進而研究蝕刻孔洞的形貌差異。
實驗結果顯示,利用電化學蝕刻法,在含氟化銨與過氧化氫混合
蝕液中,可將塗佈奈米銀顆粒的矽晶表面蝕刻出深孔洞,此蝕刻速率
隨著過氧化氫濃度的增加而提高。藉由電化學量測法,可得知:蝕刻
液溫度增加、或過氧化氫的濃度提高時,此系統之腐蝕電位往負電位
移動,且腐蝕電流增加,加速蝕刻速率,當溫度達60oC 時有最高的
蝕刻速率,藉由阿瑞尼士方程式可以求出其系統的蝕刻之活化能為
48.4 KJ/mol。
The aim of this work was to prepare porous silicon(PS) by
electrochemical etch of p-type silicon (100) coated with nano-Ag
particles in an aqueous solution of ammonium fluoride mixed with
hydrogen peroxide. DC potentiodynamic polarization was conducted and
the anodic polarization curves were analyzed to find the optimal
potentials for potentiostatic preparation of the PS.
The results displayed that deep holes were produced
electrochemically on the silicon dispersed with nano-Ag particles in the
solution containing ammonium fluoride and hydrogen peroxide. The
corrosion potential shifts to active direction and the etching rate increases
with increasing the reaction temperature and the concentration of
hydrogen peroxide. The optimal temperature to obtain porous silicon was
at 60℃ to obtain the highest depth. The activation energy is estimated to
be 48.4 KJ/mol for the etching system by the Arrhenius plot.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 viii
圖目錄 x
第一章、簡介 1
1-1、研究背景 1
1-1-1 多孔矽及其應用 1
1-1-2 多孔矽的製作技術 1
1-2、研究目的 3
第二章、基礎原理與文獻回顧 5
2-1、半導體電化學理論 5
2-1-1 半導體材料電子能階 5
2-1-2 電解液的電子能階-絕對電極電位 5
2-1-3 半導體卅電解液界面 6
2-1-3-1 平衡狀態 6
2-1-3-2 平帶電位 8
2-2、多孔矽形成機制 8
2-2-1 矽在電解液中的電流-電壓(I-V)特性 9
2-2-2 矽的陽極溶解反應 10
2-2-3 多孔矽的形成模型 12
2-2-3-1 貝爾模型 12
2-2-3-2 擴散機制模型 14
2-2-3-3 Zhang 模型 17
2-2-3-4 Unagami 模型 19
2-2-4 電化學蝕刻製作多孔矽結構 21
2-3、觸媒催化反應 23
2-3-1 過氧化氫性質 23
2-3-2 觸媒反應原理 24
2-3-3 觸媒種類 25
2-3-4 觸媒金屬應用於矽蝕刻 25
2-4、活化能的測定 27
第三章、實驗方法與進行步驟 29
3-1 還原銀溶液配製 29
3-2 試片選擇 29
vi
3-3 試片前處理 29
3-4 實驗設備 30
3-5 蝕刻液選擇 31
3-6 蝕刻方法 31
3-7 表面形貌觀察 32
第四章、結果 33
4-1 蝕刻液特性 33
4-1-1 氟化銨系統pH 與導電度量測 33
4-1-2 氫氟酸系統pH 與導電度量測 33
4-2 塗佈銀溶液之試片 34
4-2-1 開路電位(OCP)量測 34
4-2-2 陽極動態極化曲線 35
4-2-3 濕式蝕刻與電化學蝕刻 35
4-3 未塗佈銀溶液之試片對照 38
4-3-1 開路電位(OCP)量測 38
4-3-2 陽極動態極化曲線 38
4-3-3 濕式蝕刻與電化學蝕刻 40
4-4 氫氟酸系統與文獻對照 41
4-4-1 開路電位(OCP)量測 42
4-4-2 陽極動態極化曲線 43
4-4-3 濕式蝕刻與電化學蝕刻 44
4-4-4 文獻對照-同步蝕刻之可能性 46
4-5 溫度變化對氟化銨系統之影響 47
4-5-1 開路電位(OCP)量測 47
4-5-2 陽極動態極化曲線 48
4-5-3 電化學蝕刻 49
4-5-4 活化能之計算 50
第五章、討論 51
5-1 蝕刻液特性與影響 51
5-2 塗佈銀溶液之試片 51
5-3 未塗佈銀溶液之試片 53
5-4 與文獻氫氟酸系統之比較 54
5-5 溫度變化對氟化銨系統之影響 55
第六章、結論 57
第七章、未來展望 59
參考文獻 60
[A.J.Bard] A.J.Bard, “Electrochemical Methods”, p745-
761,(2000).
[Behern] J. von Behren, L. Trubeskov, and P. M. Fauchet,
“Preparation and characterization of ultrathin porous
silicon films“, Appl. Phys. Lett., 66, 1662, (1995).
[Bell] T. E. Bell, P.T.J. Gennissen, D. DeMunter, M. Kuhl,
“Porous silicon as a sacrificial material“, J.
Micromech. Microeng., 6, 361, (1996).
[Birner] A. Birner, GrÜning, U. Ottow, S., SCHNEIDER, A.,
MÜller, F.,Lehmann, V., FÖll, H., GÖSELE, U.,
“Macroporous Silicon: A two-dimensional photonic
bandgap material suitable for the near-infrared spectral
range“, Physica Status Solidi (a) 165, 111, (1998).
[Chao] K. J. Chao, S. C. Kao, C. M. Yang, M. S. Hseu, and T.
G. Tsai, “Formation of High Aspect Ratio Macropore
Array on p-Type Silicon“, Electrochem. Solid-State
Lett., 3, 489, (2000).
[Cheng] 陳威宇,光電化學蝕刻製作n-型(100)矽質微米巨孔
陣列及連續壁結構,國立中央大學機械工程學系碩
士論文(2004)
[Chou] 周裕齊,添加甲醇/乙醇於氫氟酸/氟化銨溶液對其製
作p-型(100)矽微米孔洞之影響,國立中央大學機械
工程學系碩士論文(2006)
[Christo 1] M. Christophersen, J. Carstensen, H. Föll, “Pore
Formation Mechanisms for the Si-HF System“, Mat.
Sci. Eng. B, 69-70, 23 (2000)
[Christo 2] M. Christophersen, J. Carstensen, A. Feuerhake, H.
Föll, “Crystal Orientation and Electrolyte dependence
fore Macropore Nucleation and satbele Growth on
p-type silicon“, Mat. Sci. Eng. B, 69-70, 194 (2000)
[E.MONEY] E. Moyen,W. Wulfhekel,Etching nano-holes in silicon
carbide using catalytic platinum nano-particles, Appl.
Phys. A 84, 369–371 (2006)
[Fauthauer] R.W. Fauthauer, T. George, A. Ksendzov, and R.P.
Vasquez, “Visible luminescence from silicon waters
subjected to stain etches“, Appl. Phys. Lett., 60, 995
(1992).
[ H. Fo¨ll] H. Fo¨ll*, M. Christophersen,” Formation and
application of porous silicon”, Materials Science and
Engineering R 39 (2002) 93–141
[H.Ohji ] H. Ohji, P. T. J. Gennissen, P. J. French, and K.
Tsutsumi, “Fabrication of a beam-mass structure using
single-step electrochemical etching for micro structures
(SEEMS) “, J. Micromech. Microeng., 10, 440, (2000).
[H.Ohji ] H. Ohji, PJ. Trimp, P.J. French, “Fabrication of free
standing structure using single step electrochemical
etching in hydrofluoric acid“, Sens. Actuators A, 73,
95, (1999).
[Hong] 洪淑慧, “多孔矽之原子力顯微鏡與光激發光之研究
“, 國立清華大學物理學系碩士論文(1999)
[Ishii] Ishii, T., Mitsui, K., Sano, K., Inoue, A., Nippon
Shokubai Kagaku Kogyo Company Ltd., Method for
treatment of wastewater, Eur. Pat. Application
90313238.9, Publication Number 0 431 932 A1., 1991.
[J.A.Cheng] 陳建安, 過氧化氫觸媒雙推進劑熱機引擎之研發,
國立成功大學航空太空工程研究所碩士論文(2004)
[Kleimann] P. Kleimann, J. Linnros, S. Petersson,
“Formation of wide and deep pores in silicon by
electrochemical etching“, Mat. Sci. Eng. B69-70,
29-30(2000)
[Lai] 賴重儒, ”反應條件對以擔體氧化鈰觸媒催化含酚廢
水濕式氧化反應之影響”, 嘉南藥理科技大學環境工
程與科學系碩士論文(2007)
[Lehmann] V. Lehmann, H. Foll, “Formation mechanism and
properties of electrochemically etched trenches in
n-type silicon“, J. Electrochem. Soc., 137, 653, (1990).
[Lehmann] V. Lehmann, W. Honlein, R. Reisinger, A. Spitzer, H.
Wendt, and J. Willer, “A novel capacitor technology
based on porous silicon“, Thin Solid Films, 276, 138,
(1996).
[Mizishima] I. Mizishima, T. Sato, S. Taniguchi, and Y.
Tsunashima, “Empty-space-in-silicon technique for
fabricating a silicon-on-nothing structure“, Appl. Phys.
Lett., 77, 3290, (2000).
[M.I.J.Beale1] M.I.J. Beale, N.G. Chew, M.J, Uren, A.G. Cullis, J.D.
Benjamin, “Microstructure and formation mechanism
of porous silicon“, Appl. Phys. Lett., 46, 86, (1985).
[M.I.J.Beale 2] M.I.J. Beale, J.D. Benjamin, M.J, Uren, N.G. Chew,
A.G. Cullis, “An experimental and theoretical study of
the formation and microstructure of porous silicon“, J.
Cryst. Growth. 73, 622 (1985).
[M.Tomkiewicz] M. Tomkiewicz, J Electrochem. Soc, 126:2220,
(1979).
[Ottow] Ottow, S., Lehmann, V., Föll, H., “Processing of three
dimensional microstructures using macroporous n-type
Silicon “, J. Electrochem. Soc., 143, S. 385, (1996).
[Popkirov] Popkirov, G. S, Ottow, S., “In situ impedance
spectroscopy of silicon electrodes during the first
stages of pore formation “, Journal of Electroanalytical
Chemistry, 429, S. 47-54, (1997)
[R. Douani] R. Douani, T. Hadjersi, Formation of aligned
silicon-nanowire on silicon in aqueous HF/(AgNO3 +
Na2S2O8) solution, Applied Surface Science 254
(2008) 7219–7222
[Rossi] A. M. Rossi, G. Amato, L. Boarino, and C. Novero,
“Realisation of membranes for atomic beam collimator
by macropore micromachining technique (MMT) “,
Mater. Sci. Eng., B69-70, 66, (2000).
[Rowson 1] S. Rowson, A. Chelnokov, J. M. Lourtioz,
“Macroporous silicon photonic crystals at 1.55 μm“,
Electron. Lett., 35, 753, (1999).
[Rowson 2] S. Rowson, A. Chelnokov, J. M. Lourtioz, “
Two-Dimensional Photonic Crystals in Macroporous
Silicon: From Mid-Infrared (10 m) to
Telecommunication Wavelengths (1.3-1.5 m) “, J.
Lightwave Technol., 17, 1989, (1999).
[Smith ] R.L. Smith, S.F. Chuang, S.D. Collins, J. Electro.
Mater. 17, 533(1988).
[Smith ] R.L. Smith, S.D. Collins, J. Appl. Phys. 71(8),
R1(1992).
[S. Traasatti] S. Traasatti, “The absolute electrode potential: an
explanatory note“, IUPAC Commission I. 3,
electrochemistry, (1984).
[Turner] D. R Turner, “Electropolishing silicon in
hydrofluoric acid solutions“, J. Electrochem. Soc., 105,
653, (1958).
[Uhlir] A. Uhlir, Bell Syst. Techn. J., 35, 333, (1956).
[Unagami] T. Unagami, J. Electrochem. Soc. 127, 476, (1980).
[Vazsonyi] E. Vazsonyi, E. Szilagyi, P. Petrik, Z.E. Horvath, T.
Lohner, M. Fried, G. Jalsovszky, “Porous silicon
formation by stain etching“, Thin Solid Films, 388,
295, (2001).
[web] 網路查詢資料
[W.P.Gomes] W. P. Gomes, F. Cardon, Prog. Surf. Sci, 12:155,
(1982).
[W.Lang] Walter Lang, “Silicon microstructuring technology“,Mater. Sci. Eng., R17, 1-55, (1996).
[Wu] 吳浩青, “電化學動力學“, 科技圖書,pp174-185(2000).
[X. Li]X. Li and P. W. Bohna,” Metal-assisted chemical
etching in HF/H2O2 produces porous silicon”
APPLIED PHYSICS LETTERS, VOLUME 77,
NUMBER 16,(2000)
[X.G.Zhang1] 章小鴿,”硅及其氧化物的電化學”,化學工業出版
社,2004
[X.G.Zhang2] X. G. Zhang, S. D. Collins, R. L. Smith, “Porous
silicon formation and electropolishing of silicon by
anodic polarization in HF solution“, J. Electrochem.
Soc., 136, 1561, (1989).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top