(54.81.220.239) 您好!臺灣時間:2019/07/17 10:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:邱建興
研究生(外文):Jeng-hsing Chiu
論文名稱:利用智慧型控制與主動式直軸訊號注入法之孤島偵測研究
論文名稱(外文):Active islanding detection method using d-axis disturbance signal injection with intelligent control
指導教授:林法正林法正引用關係
指導教授(外文):Faa-jeng Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:128
中文關鍵詞:換流器孤島偵測盲點偵測區小波模糊類神經網路
外文關鍵詞:non-detection zoneinverterislanding detection
相關次數:
  • 被引用被引用:3
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究論文利用直軸訊號注入法並結合智慧型控制器提出一新型主動式孤島偵測法,所提之主動式孤島偵測法基於將擾動訊號透過與直軸電流的結合轉換至換流器系統,此直軸電流的擾動在市電脫離時將導致RLC負載端的頻率偏移。所提之孤島偵測法將於UL1741安全規範的反孤島測試系統中評估可行性,此直軸擾動訊號注入法旨在達成類似零的盲點偵測區和最小化功率品質的影響並且在不需其它感測元件或裝置的情況下簡易執行。此外為近一步的增進孤島偵測能力,本論文提出小波模糊類神經網路控制器來取代傳統的比例積分控制器於孤島偵測控制法中,此小波模糊類神經網路具有倒傳遞與模糊類神經之智慧學習演算功能,最後,於實驗結果中驗證所提之智慧型直軸訊號注孤島偵測法之可行性與有效性。
A novel active islanding detection method using d-axis disturbance signal injection with intelligent control is proposed in this study. The proposed active islanding detection method is based on injecting a disturbance signal into the system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the grid is disconnected. The feasibility of the proposed method is evaluated under the UL1741 anti-islanding test configuration. The proposed d-axis disturbance signal injection method is intended to achieve a reliable detection with quasi zero non-detection zone (NDZ), minimum effects on power quality and easy implementation without additional sensing devices or equipments. Moreover, to further improve the performance of islanding detection method, a wavelet fuzzy neural network (WFNN) intelligent controller is proposed to replace the proportional-integral (PI) controller used in traditional injection method for islanding detection. Furthermore, the network structure and the on-line learning algorithm of the WFNN are introduced in detail. Finally, the feasibility and effectiveness of the proposed d-axis disturbance signal injection method is verified with experimental results.
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究成果 7
1.4 論文大綱 8
第二章 孤島偵測法技術介紹與分析 9
2.1 簡介 9
2.2 孤島現象說明 10
2.3 反孤島測試電路設計 12
2.4 孤島偵測之相關規範 14
2.5 電力品質與保護規範 16
2.5.1 IEEE 929測試條件 16
2.5.2 IEEE1547測試條件 17
2.6 現有孤島偵測分析 19
2.6.1 被動式孤島偵測法 19
2.6.2 主動式孤島偵測法 26
第三章 系統架構與換流器控制策略與模擬 34
3.1 簡介 34
3.2 三相座標軸轉換分析 35
3.2.1 靜止座標軸轉換 37
3.2.2 同步座標軸轉換 38
3.3 三相電流控制與實虛功率控制分析 40
3.4 三相電壓相位同步法 41
3.4.1 相線電壓軸轉換法 41
3.4.2 三相電壓濾波法 42
3.4.3 鎖相迴路控制法 43
3.5 市電併聯型換流器之模擬 44
第四章 小波模糊類神經網路控制器與模擬 52
4.1 簡介 52
4.2 小波模糊類神經網路架構 52
4.3 小波模糊類神經網路線上學習法則 55
4.4 小波模糊類神經網路控制器之模擬 58
第五章 新型主動式孤島偵測法與模擬 63
5.1 簡介 63
5.2 主動式直軸訊號注入之孤島偵測法NDZ分析 63
5.3 主動式直軸訊號注入之孤島偵測法 65
5.4 主動式直軸訊號注入之孤島偵測法與WFNN之結合 70
5.5 主動式與被動式孤島偵測法之模擬 73
第六章 硬體與實作結果 79
6.1 系統控制架構與系統實體成果 79
6.2 全系統硬體電路說明 81
6.2.1 高性能伺服控制卡MRC-6810 81
6.2.2 電壓感測電路 82
6.2.3 電流感測電路 82
6.2.4 智慧型功率模組與驅動電路 83
6.2.5 輔助電源電路 85
6.2.6 三相電流控制硬體電路 86
6.2.7 換流器軟體規劃 87
6.3 實作結果與說明 88
6.3.1 被動式孤島實作結果 89
6.3.2 主動式孤島實作果 91
6.3.3 復電偵測實作結果 102
第七章 結論與未來展望 105
參考文獻 106
作者簡歷 111
[1]M. Hester, “Oil and energy trends:annual statistical review,” Blackwell Energy Research, 2007.
[2]郭博堯,“京都議定書的爭議與妥協”,2001。http://www.npf.org.tw/PUBLICATION/SD/090/SD-R-090-024.htm
[3]黃意明,風力發電之類神經網路最大功率控制,中原大學碩士論文,民國95年。
[4]吳財福、陳裕愷、張建軒,太陽光電能供電與照明系統綜論,第二板,全華科技圖書股份有限公司,民國96年。
[5]林力韋,用於燃料電池電源系統之雙向直流/直流轉換器,中原大學博士班論文,民國96年。
[6]江炫樟,以三臂式整流/變流器為基礎之UPS之分析與設計,電子月刊第91期, 2003年2月號。
[7]林盛瑋,電流注入法應用於主動式孤島偵測之電力品質影響分析,國立台灣大學碩士班論文,民國98年。
[8]IEEE Std. 929-2000, IEEE Recommended practice for utility interface of photovoltaic(PV) systems, IEEE Standards Coordinating Committee 21 on Fuel Cells, Photovoltaics, Dispersed Generation, and Energy Storage, 2000.
[9]IEEE Std. 1547, “IEEE standard for interconnecting distributed resources with electric power systems,” IEEE Standards Coordinating Committee 21 on Fuel Cells, Photovoltaics, Dispersed Generation, and Energy Storage,2003.
[10]I. J. Balaguer and F. Z. Peng, “Control for grid-connected and intentional islanding operations of distributed power generation,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, 2011.
[11]F. Pai and S. Huang, “A Detection Algorithm for Islanding Prevention of Dispersed Consumer Owned Storage and Generating Units,” IEEE Transactions on Energy Conversion, vol. 16, no. 4, 2001.
[12]W. Bower and M. Ropp, “Evaluation of Islanding Detection Methods for Photovoltaic Utility-Interactive Power Systems,” International Energy Agency, Technology Report IEA PVPS T5-09, 2002.
[13]F. Wang, Z. Mi, “Passive Islanding Detection Method for Grid Connected PV System,” International Conference on Industrial and Information Systems, 2009.
[14]J. Sung-Il, and K. H. Kim, “An Islanding Detection Method for Distributed Generations Using Voltage Unbalance and Total Harmonic Distortion of Current,” IEEE Transactions on Power Delivery, vol. 19, no. 2, 2004.
[15]G. K. Hung, C. Chang , C. L. Chen, “Automatic phase-shift method for islanding detection of grid-connected photovoltaic inverters,” IEEE Transactions on Energy Conversion, vol. 18, no. 1, 2003.
[16] H. H. Zeineldin, L. K. James, “Performance of the OVP/UVP and OFP/UFP Method with voltage and frequency dependent loads,” IEEE Transactions on Power Delivery, vol. 24, no. 2, 2009.
[17]M. E. Ropp, M. Begovic, A. Rohatgi, “Analysis and performance assessment of the active frequency drift method of islanding prevention,” IEEE Transactions on Energy Conversion, vol. 14, no. 3, 1999.
[18]UL Std. 1741, Inverters, converters, controllers and interconnection system equipment for use with distributed energy resources, 2002.
[19]L. A. C. Lopes, H. Sun, “Performance assessment of active frequency drifting islanding detection methods,” IEEE Transactions on Energy Conversion, vol. 21, no. 1, 2006.
[20]洪國強,住宅市電併聯型太陽能電力轉換器,國立台灣大學電機工程學研究所博士論文,2002。
[21]P. O’Kane, B. Fox, “Loss of mains detection for embedded generation by system impedance monitoring,” Sixth International Conference on Developments in Power System Protection, Conference Publication no.43, 1997.
[22]G. A. Smith, P. A. Onions, D. G. Infield, “Predicting islanding operation of grid connected PV inverters,” IEE Proceedings Electronic Engineer Power Application, vol. 147, no. 1, 2000.
[23]M. E. Ropp, Design issues for grid-connected photovoltaic systems, Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, GA, 1998.
[24]T. T. Ma, “Novel voltage stability constrained positive feedback anti-islanding algorithms for the inverter-based distributed generator systems,” IET Renewable Power Generation, vol. 4, no. 2, 2010.
[25]J. Crowe:PID Control: New identification and design methods. London, U.K.: Springer-Verlag, 2005.
[26]T. Yamamoto, K. Takao, T. Yamada, “Design of a data-driven PID controller,” IEEE Transaction on Control System Technology, vol. 17, no. 1, 2009.
[27]K. K. Tan, S. Huang, and T. Ferdous, “Robust self-tuning PID controller for nonlinear systems,” J. Process Control, vol. 12, no. 7, 2002.
[28]S. Parvez, Z. Gao, “A wavelet-based multiresolution PID controller,” IEEE Transactions on Industrial Application, vol. 41, no. 2, 2005.
[29]V. Parra-Vega, S. Arimoto, Y. H. Liu, G. Hirzinger, P. Akella, “Dynamic sliding PID control for tracking of robot manipulators: theory and experiments,” IEEE Transactions on Robotic Automation, vol. 19, no. 6, 2003.
[30]F. J. Lin, W. J. Hwang, R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 1, 1999.
[31]L. X. Wang, “A course in fuzzy systems and control,” (Prentice-Hall, NJ, 1997).
[32]Y. M. Park, M. S. Choi, K. Y. Lee, “An optimal tracking neural controller for nonlinear dynamic systems,” IEEE Transactions on Neural Networks, vol. 7, no. 5, 1996.
[33]L. X. Wang, “Adaptive fuzzy systems and control: design and stability analysis” (Prentice-Hall, Englewood Cliffs, NJ, 1994).
[34]W. Yu, X. Li, “Fuzzy identification using fuzzy neural betworks with stable learning algorithms,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 3, 2004.
[35]F. J. Lin, H. J. Shieh, P. K. Juang, L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo- actuator,” IEEE Transactions on Ultasonics, Ferroelectrics, Frequency Control, vol. 53, no. 9, 2006.
[36]Y. Gao, M. J. Er, “An intelligent adaptive control scheme for postsurgical blood pressure regulation,” IEEE Transactions on Neural Networks, vol. 16, no. 2, 2005.
[37]F. J. Lin, P. K. Huang, C. C. Wang, L.T. Teng, “An induction generator system using fuzzy modeling and recurrent fuzzy neural network,” IEEE Transactions on Power Electronics, vol. 22, no. 1, 2007.
[38]J. Zhang, G. G. Walter, Y. Miao, W. N. Lee: “Wavelet neural networks for function learning,” IEEE Transactions on Signal Processing, vol. 43, no. 6, 1995.
[39]Q. Zhang, “Using wavelet networks in nonparametric estimation,” IEEE Transactions on Neural Networks, vol. 8, no. 2, 1997.
[40]黃仲欽,交流電動機控制,交流電動機課程講義,民國97年。
[41]F. Blaabjerg, R. Teodorescu, M. Liserre, A. V. Timbus: “Overview of control and grid synchronization for distributed power generation systems” , IEEE Transactions on Industrial Electronics, vol. 53, no. 5, 2006.
[42]S. K. Chung, “Phase-locked loop for grid-connected three-phase power conversion systems,” IEE Proceedings Electric Power Applications, vol. 147, no. 3, 2000.
[43] AD210 Application Note, Analog Devices Co.
[44] LA-55P Application Note, LEM Co.
[45] PM30CSJ060 Application Note, Mitsubishi Electric Co.
[46] 1M0365R Application Note, Fairchild Semiconductor Co.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔