(3.227.208.153) 您好!臺灣時間:2019/11/12 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:邱紹靂
研究生(外文):Shao-Li Chiu
論文名稱:顆粒於振動床內熱傳行為之研究
指導教授:蕭述三蕭述三引用關係
指導教授(外文):Shu-San Hsiau
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:144
中文關鍵詞:顆粒振動床熱傳逆運算
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以實驗的方式探討顆粒體受到垂直振動時的熱傳行為。其分析對象包括顆粒床體的溫度分佈、顆粒的熱擴散係數、及顆粒體自我擴散運動。研究主要定性探討振動顆粒體在不同的振動條件下的熱傳現象;為了量化熱傳現象,進一步以逆運算法定量分析振動床之振動條件與熱擴散係數間的關係;另外因為顆粒自我擴散運動會增強顆粒熱傳,為證明兩者間的關係,本論文也將以影像處理及粒子追蹤的方式,計算出顆粒自我擴散係數,再將自我擴散係數與熱擴散係數進行比較,實驗結果顯示,熱擴散係數與自我擴散運動呈現線性正相關。
This study investigates the effect of vertical vibration on the granular heat transfer phenomena. In order to qualify the thermal phenomena under different vibration conditions, the inverse numerical method is applied for estimating the effective thermal diffusivity of particle. Because the granular self-diffusivity can enhance the granular thermal performance, this study use Particle tracking velocimetry (PTV) to calculate the granular velocity and granular self-diffusivity. Then we compare the effective thermal diffusivity and granular self-diffusivity. The experimental results show that the effective thermal diffusivity increased with the increased granular self-diffusivity, and in a linear relationship.
摘要 I
Abstract II
致謝 III
目錄 IV
附表目錄 VI
附圖目錄 VII
符號說明 XIV
第一章 簡介 1
1.1顆粒體簡介 1
1.2顆粒體在振動床中的運動行為 2
1.3振動床顆粒的熱傳行為 9
1.4逆向熱傳導問題 10
1.5研究動機 11
第二章實驗設備與分析方法 13
2.1研究設備 13
2.2實驗原理與方法 18
2.2.1實驗參數 18
2.2.2 顆粒熱傳性質分析 18
2.2.3顆粒的傳輸性質影像分析 22
2.3顆粒流動性質介紹 23
2.3.1自我擴散理論 23
2.4顆粒熱傳性質介紹 24
2.4.1標準差簡介 24
2.4.2熱擴散係數簡介 25
2.5實驗步驟 25
2.5.1加熱顆粒床 25
2.5.2影像分析 26
2.6誤差分析 26
第三章結果與討論 29
3.1振動床系統振動條件對於顆粒床溫度分佈之影響 30
3.1.1不同的振動頻率對於顆粒床溫度分佈之影響 30
3.1.2不同的振動加速度對於顆粒床溫度分佈之影響 32
3.2振動床系統振動條件對於顆粒運動行為之影響 32
3.3逆運算分析顆粒熱擴散係數 34
第四章結論 37
參考文獻 38


[1]Faraday, M., 1831, “On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces,” Philosophical Transactions of the Royal Society of London, Vol. 121, pp. 299-340.
[2] Evesque, P., and Rajchenbach, J., 1989, “Instability in a sand heap,” Physical review letters, Vol. 62, pp. 44-46.
[3] Evesque, P., Szmatula, E., and Denis, J. P., 1990. “Surface fluidization of a sand pile,” EPL, Vol. 12, pp. 623-627.
[4] Wassgren, C. R., Brennen, C. E., and Hunt, M. L., 1995. “Vertical vibration of a deep bed of granular material in a container, ” Journal of applied mechanics, Vol.63, pp. 712-719.
[5] Hsiau, S. S. and Pan, S. J., 1998, “Motion state transitions in a vibrated granular bed,” Powder Technology, Vol. 96, pp.219-226.
[6] Faraday, M., 1831, “On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces,” Philosophical Transactions of the Royal Society of London, Vol. 121, pp. 299-340.
[7] Duran, J., Mazozi, T., Clement, E. and Rajchenbach, J., 1994, “Size segregation in a two-dimensional sandpile: Convection and arching effects,” Physical Review E, Vol. 50, pp. 5138–5141.
[8] Knight, J. B., Jaeger, H. M. and Nagel, S. R., 1993, “Vibration-induced size separation in granular media: The convection connection,” Physical Review Letters, Vol. 92, pp.3728-3731.
[9] Hsiau, S. S. and Chen, C. H., 2000, “Granular convection cells in a vertical shaker,” Powder Technology, Vol. 111, pp. 210-217.
[10] Yang, S. C. and Hsiau, S. S., 2000, “Simulation study of the convection cells in a vibrated granular bed,” Chemical Engineering Science, Vol. 55, pp.3627-3637.
[11] Tai, C. H. and Hsiau, S. S., 2004, “Dynamic behaviors of powders in a vibrating bed,” Powder Technology, Vol. 139, pp. 221-232.
[12] Wassgren, C. R., 1997. “Vibration of granular materials” Ph.D. Thesis, California Institute of Technology, California, USA.
[13] Knight, J. B., 1997, “External boundaries and internal shear bands in granular convection,”Physical Review E, Vol. 55, pp. 6016-6023.
[14] Rosato, A., Strandburg, K. J., Prinz, F. and Swendsen, R. H., 1987, “Why the Brazil nuts are on top: Size segregation of particulate matter by shaking,” Physical Review Letters, Vol. 58, pp. 1038-1040.
[15] Rodriguez-Linan, G. M. and Nahmad-Molinari, Y., 2006, “Granular convection driven by shearing inertial forces,” Physical Review E, Vol. 73, 011302.
[16]Lacey, P. M. C., “Development in the theory of particulate mixing,” J. Appl. Chem. Vol. 15, pp.257-268.
[17]Gyenis, J., 1999, “Assessment of mixing mechanism on the basis of concentration pattern,” Chem. Eng. Process, Vol. 38, pp. 665-674.
[18] Lu, L. S. and Hsiau, S. S., 2005, “Mixing in vibrated granular beds with the effect of electrostatic ford,” Powder Technology, Vol. 160, pp. 170-179.
[19] Lu, L. S., and Hsiau, S. S., 2008, “Mixing in a vibrated granular bed: Diffusive and convective effects,” Powder Technology, Vol.184, pp. 31-43.
[20] Cooke, W., Warr, S., Huntley, J. M. and Ball, R. C., 1996, “Particle size segregation in a two-dimensional bed undergoing vertical vibration,” Physical Review E, Vol. 53, pp.2812-2822.
[21] Hsiau, S. S. and Yu, H. Y., 1997, “Segregation phenomena in a shaker,” Powder Technology, Vol. 93, pp.83-88.
[22] Fan, L. S., and Zhu, C., 2005, Principles of gas-solid flows. Cambridge University Press.
[23] Nguyen, V. D., Cogné, C., Guessasma, M., Bellenger, E., and Fortin, J., 2009, “Discrete modeling of granular flow with thermal transfer: application to the discharge of silos,” Applied thermal engineering, Vol. 29, pp.1846-1853.
[24] Merckx, B., Dudoignon, P., Garnier, J. P., and Marchand, D., 2012, “Simplified Transient Hot-Wire Method for Effective Thermal Conductivity Measurement in Geo Materials: Microstructure and Saturation Effect,” Advances in Civil Engineering, Vol.2012.
[25] Tavman, I. H., 1996, “Effective thermal conductivity of granular porous materials,” International Communications in Heat and Mass Transfer, Vol.23, pp.169-176.
[26] Natarajan, V. V. R., and Hunt, M. L., 1997, “Heat transfer in vertical granular flows,” EXPERIMENTAL HEAT TRANSFER An International Journal, Vol.10, pp.89-107.
[27] Hsiau, S. S., and Hunt, M. L. 1993, “Kinetic theory analysis of flow-induced particle diffusion and thermal conduction in granular material flows,” Journal of heat transfer, Vol.115, pp.541-548.
[28] Shi, D., Vargas, W. L., and McCarthy, J. J., 2008, “Heat transfer in rotary kilns with interstitial gases,” Chemical Engineering Science, Vol.63, pp.4506-4516.
[29] Rahman, S. A., and Mujumdar, A. 2008, “Combined radiant and conductive vacuum drying in a vibrated bed,” International Journal of Food Engineering, Vol.4
[30] Schluender, E. U. 1981, “Heat transfer between packed, agitated and fluidized beds and submerged surfaces,” Chemical Engineering Communications, Vol,9, pp.273-302.
[31] Bukareva, M.F., Chlenov, V.A., and Mikhailov, N.V., 1971, “Investigation of heat transfer between heating surfaces and a vibro-fluidized bed,” International Chemical Engineering , Vol.1, pp.19-21.
[32] Thomas, B., Mason, M. O., Sprung, R., Liu, Y. A., and Squires, A. M., 1998, “Heat transfer in shallow vibrated beds,” Powder technology, Vol.99, pp.293-301.
[33] Siebert, A. W., Highgate, D., and Newborough, M., 1999, “Heat transfer characteristics of mechanically-stimulated particle beds,” Applied thermal engineering, Vol.19, pp.37-49.
[34] Wunschmann, J., Schluender, E. U., 1975, “Heat transfer from heated plates to stagnant and agitated beds of spherical shaped granules under normal pressure and vacuum,” Proceedings of the 5th Heat Transfer Conference(Tokyo), Vol. 5, pp. 49-53.
[35] Siebert, A., Newborough, M., & Highgate, D., 2002, “Heat transfer in mechanically-fluidized particle beds,” Chemical Engineering Research and Design, Vol.80, pp.332-334.
[36] Highgate, D. J., Probert, S. D., Ziane, C., & Pedersen, J. K., 1993, “Heat transfers through mechanically-stimulated particle beds,” Applied energy, Vol.46, pp.349-366.
[37]Shumakov, N. V., 1957, “A method for the experimental study of the process of heating a solid body,” Soviet Physics-Technical Physics, Vol.2, pp.771-781.
[38] Stolz, G., 1960, “Numerical solutions to an inverse problem of heat conduction for simple shapes,” Journal of heat transfer, Vol.82, pp.20-25.
[39] Beck, J. V., 1970, “Nonlinear estimation applied to the nonlinear inverse heat conduction problem,” International Journal of heat and mass transfer, Vol.13, pp.703-716.
[40] Beck, J. V., Litkouhi, B., & Clair Jr, C. S., 1982, “Efficient sequential solution of the nonlinear inverse heat conduction problem,” Numerical Heat Transfer, Part A Applications, Vol.5, pp.275-286.
[41] Alifanov, O. M., & Mikhailov, V. V., 1978, “Solution of the nonlinear inverse thermal conductivity problem by the iteration method,” Journal of Engineering Physics, Vol.35, pp.1501-1506.
[42] Mikhailov, V. V., 1983, “Question of the convergence of iteration methods of solving the inverse heat-conduction problem,” Journal of Engineering Physics and Thermophysics, Vol.45, pp.1263-1266.
[43] Jarny, Y., Ozisik, M. N., & Bardon, J. P., 1991, “A general optimization method using adjoint equation for solving multidimensional inverse heat conduction,” International journal of heat and mass transfer, Vol.34, pp.2911-2919.
[44]Huang, Cheng-Hung, and Bor-Herng Chao., 1997, “An inverse geometry problem in identifying irregular boundary configurations,” International Journal of Heat and Mass Transfer, Vol.40, pp.2045-2053.
[45] Huang, C. H., Ju, T. M., & Tseng, A. A., 1995, “The estimation of surface thermal behavior of the working roll in hot rolling process”, International journal of heat and mass transfer, 38(6), 1019-1031.
[46]Cui, Miao, Xiaowei Gao, and Jinbo Zhang., 2012, “A new approach for the estimation of temperature-dependent thermal properties by solving transient inverse heat conduction problems,” International Journal of Thermal Sciences , Vol.58, pp.113-119.
[47]Chen, Han-Taw, Shen-Yih Lin, and Lih-Chuan Fang., 2001, “Estimation of surface temperature in two-dimensional inverse heat conduction problems,”International Journal of Heat and Mass Transfer Vol.44, pp.1455-1463.
[48] Hunt, M. L., 1997 “Discrete element simulations for granular material flows: effective thermal conductivity and self-diffusivity,” International journal of heat and mass transfer , Vol.40, pp.3059-3068.
[50] Chen, X., & Louge, M., 2008, “Heat transfer enhancement in dense suspensions of agitated solids. Part I: Theory,” International Journal of Heat and Mass Transfer, Vol.51, pp.5108-5118.


電子全文 電子全文(網際網路公開日期:20210729)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔