( 您好!臺灣時間:2020/10/22 07:19
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Yen-ren Zheng
論文名稱:拼貼式伽瑪相機之訊號讀出方法表現分析 與針孔穿透模型建立
論文名稱(外文):Performance Analysis of Signal Readout Methods for Tiled Gamma Cameras and Building of Pinhole Penetration Models
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

In this study, a speedy forward projection model is built up for micro-SPECT systems to perform the pinhole penetration calculations. The performance of the signal readout methods for tiled gamma cameras are also analyzed through simulations.
The pinhole penetrations of knife-edge and kneel-edge pinholes are calculated by ray tracing. The model is straightforward, avoids the approximate error of Taylor series expansion, and has the functions of pinhole displacement and rotation. In addition, the mean detector response functions (MDRFs) of tiled gamma cameras are generated by the SCOUT simulation tool, including the outputs of 1616 individual anodes and 1616 row/column signals. Both the multivariate normal model and Poisson model are employed as the signal probability models. The resolution performance of the detectors with different signal readout methods are judged by the Fisher information matrix and Cramer-Rao lower bound based on the maximum likelihood principle.
According to the simulations results, the resolution with the multivariate normal model is better than that with the Poisson model. The reason is that the multivariate normal model accounts for the signal correlations among the anodes and hence better represents the signal outputs. Moreover, using the signal outputs of all anodes keeps more information than using just the row/column signal outputs, and hence yields better spatial resolution. In conclusion, utilizing the multivariate normal model built with the signal outputs of all anodes would attain the best spatial resolution.

中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 3
第二章 微型單光子放射電腦斷層掃描攝影 4
2.2數位成像系統(Digital-Imaging System) 6
2.2.1輻射能量傳輸之分佈函數(Distribution Function for Radiation Energy Transport) 7
2.2.2偵測器響應函數(Detector Response Function) 11
2.3伽瑪射線偵測器 13
2.3.1準直儀 13
2.3.2閃爍晶石偵測器 15
2.3.3光電倍增管物理 17
2.3.4 訊號讀出方法 20
2.4 空間解析度 20
2.4.1偵測器平均響應(Mean Detector Response Function,MDRF) 20
2.4.2費雪訊息矩陣(Fisher Information Matrix)和克拉馬-羅下限(Cramer-Rao Lower Bound) 21
2.4.3多變數常態分佈模型(Multivariate Normal Model)和帕松模型(Poisson Model) 22
第三章 針孔穿隧模型建立 25
3.1 正向投影模型(Forward Projection Model) 25
3.1.1 實驗架構 25
3.1.2 衰減形式(Attenuation Term) 26
3.2 針孔設計 30
3.2.1 針孔參數訂定 30
3.2.2 針孔傾斜和位移 31
3.3 模型建立與結果分析 34
3.3.1模擬正向投影模型方法 34
3.3.2結果驗證 43
第四章 拼貼伽瑪相機之模擬與結果分析 53
4.1伽瑪相機拼貼參數設置 53
4.2 系統模擬-SCOUT 57
4.2.1 SCOUT 57
4.2.2 電腦設備及作業系統環境 63
4.2.3 模擬偵測器平均響應(Mean Detector Response Function)實驗 63
4.3相機空間解析度估算 69
4.3.1空間解析度估算方法 69
4.3.2空間解析度估算結果驗證 72
五、結論與未來展望 83
參考文獻 85

[1] S. R. Cherry and S. S. Gambhir, "Use of positron emission tomography in animal research," ILAR Journal, vol. 42, no. 3, pp. 219-232, 2001.
[2] P. D. Acton and H. F. Kung, "Small animal imaging with high resolution single photon emission tomography," Nuclear Medicine and Biology, vol. 30, no. 8, pp. 889-895, 2003.
[3] M. N. Wernick and J. N. Aarsvold, The Fundamentals of PET and SPECT, ELSEVIER Academic Press, 2004.
[4] M. F. Smith and R. J. Jaszczak, "An analytic model of pinhole aperture penetration for 3D pinhole SPECT image reconstruction," Physics in medicine and biology, vol. 43, no. 4, pp. 761-775, 1998.
[5] E. Salçın, H. B. Barber, and L. R. Furenlid, “Design considerations for the next-generation MAPMT-based monolithic scintillation camera,” Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 81430Q-81430Q, 2011.
[6] K. A. Gross, Assessing and Optimizing Pinhole SPECT Imaging Systems for Detection Task, PhD dissertation, The University of Arizona, 2006.
[7] W. C. J. Hunter, Modeling Stochastic Processes in Gamma-Ray Imaging Detectors and Evaluation of a Multi-Anode PMT Scintillation Camera for Use with Maximum-Likelihood Estimation Methods, PhD dissertation ,The University of Arizona, 2007.
[8] H. H. Barrett, K. J. Myers and S. Rathee, "Foundations of image science," Wiley Interscience, 2004.
[9] G. L. Zeng, "A Skew-Slit Collimator for Small-Animal SPECT," Journal of Nuclear Medicine Technology, vol. 36, no. 4, pp. 207-212, 2008.
[10] Y. L. Lee, ''Development of Compact Readout Electronics and Efficient Maximum Likelihood Position Estimator for Multi-Anode-PMT Scintillation Camera'', Master thesis, National Central University, 2013.
[11] J. B. Birks, The Theory and Practice of Scintillation Counting, New York: Macmillan, 1964.
[12] R. E. Burgess, "Homophase and heterophase fluctuations in semiconducting crystals," Discussions of The Faraday Society, vol. 28, pp. 151-158, 1959.
[13] P. D. Olcott, J. A. Talcott, C. S. Levin, F. Habte and A. M. K. Foudray, "Compact readout electronics for position sensitive photomultiplier tubes," IEEE Transactions on Nuclear Science, vol. 52, no. 1, pp. 21-27, 2005.
[14] S. Siegel, R. W. Silverman,Y. Shao and S. R. Cherry, "Simple charge division readouts for imaging scintillator arrays using a multi-channel PMT," IEEE Transactions on Nuclear Science, vol. 43, no. 3, pp. 1634-1641, 1996.
[15] Y. C. Chen, System Calibration and Image Reconstruction for a New Small-Animal SPECT System, PhD dissertation , The University of Arizona, 2006.
[16] B. Porat and B. Friedlander, "Computation of the exact information matrix of Gaussian time series with stationary random components," IEEE transactions on Acoustics, Speech, and Signal Processing, vol. 34, no. 1, pp. 118-130, 1986.
[17] Available:, http://www.et-enterprises.com/files/file/Company-Profile-2011.pdf.
[18] W. T. Lin, Configuration Optimization for Multi-pinhole Micro-SPECT System by Detection Tasks and System Performance Evaluations, Master thesis, National Central University, 2013.
[19] W. C. J. Hunter, H. H. Barrett, J. P. Muzi, W. McDougald, L. R. MacDonald, R. S. Miyaoka and T. K. Lewellen, "SCOUT: a fast Monte-Carlo modeling tool of scintillation camera output," Physics in Medicine and Biology, vol. 58, no. 11, pp. 3581-3598, 2013.
[20] W. C. J. Hunter, How to Use SCOUT, a Monte-Carlo Modeling Tool of Scintillation Camera Output, User Manual.version 2012.02.23.
[21] J. D. Sain, Optical modeling, Design Optimization, and Performance Analysis of a Gamma Camera for Detection of Breast Cancer, PhD dissertation ,The University of Arizona, 2001.
[22] M. Janecek and W. W. Moses, "Optical reflectance measurements for commonly used reflectors," IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 2432-2437, 2008.
[23] M. Janecek and W. W. Moses, "Measuring light reflectance of BGO crystal surfaces," IEEE Transaction on Nuclear Science, vol. 55, no. 5, pp. 2443-2449, 2008.
[24] M. Janecek and W. W. Moses, "Simulating scintillator light collection using measured optical reflectance," IEEE Transactions on Nuclear Science, vol. 57, no. 3, pp. 964-970, 2010.

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔