跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾易男
研究生(外文):YI-NAN ZHONG
論文名稱:高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
指導教授:辛裕明
指導教授(外文):Yue-Ming Hsin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:90
中文關鍵詞:氮化鎵佈局設計
外文關鍵詞:GaN
相關次數:
  • 被引用被引用:1
  • 點閱點閱:700
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化鎵(GaN)材料由於其高崩潰電場、高電子遷移率和高電子飽和速度,是5G行動通訊技術之高功率放大器和RF功率元件的熱門應用材料。然而,在高電流和高電壓下操作的GaN功率元件將導致通道高溫並引發可靠度問題。自我發熱(self-heating)效應會導致汲極電流下降並限制輸出功率,這也會影響元件的使用壽命,為了在高功率性能下操作元件,必須在元件製作和電路應用之前考慮散熱問題。減少熱效應的有效方法之一是背向穿孔(backside via)製程和佈局。在本文中,使用了兩種具有不同背向穿孔佈局的AlGaN/GaN高電子遷移率電晶體(HEMT)以研究熱特性與高頻特性。將源極透過背向穿孔連接至晶片的背面可以有效地散熱。在整個主動區外具有背向穿孔的電晶體稱為OSV (outside backside via)佈局電晶體;除了在主動區外具有背向穿孔之外,在主動區源極中有一個額外背向穿孔的電晶體稱為ISV (internal backside via)佈局電晶體。在不同溫度下分析兩種電晶體之直流特性,包括熱阻分析等;並且建立小訊號模型,研究兩種電晶體之本質參數對於溫度的相依性程度。
此外,5G行動通訊技術對於線性度的要求非常高,本文探討不同閘極對源極長度(LGS)之電晶體其線性度之變化及影響。一般而言,電阻是一個線性的元件,電阻越大的電晶體會有較大的線性度。為了改善氮化鎵元件之線性度,設計不同閘極至源極距離(LGS)佈局之AlGaN/GaN HMETs,研究其直流特性、高頻特性、大訊號特性和元件線性度。
Gallium nitride (GaN) materials are attractive to be used in high power amplifier and RF power applications for 5G communication technology due to their high breakdown electric field, high electron mobility and high electron saturation speed. However, GaN power devices operating at high currents and high voltages will cause high channel temperature and cause reliability issues. The self-heating effect causes the drain current to drop and limits the output power, which also affects the lifetime of the devices. One of the effective ways to reduce thermal effects is the backside via process and layout. In this paper, two AlGaN/GaN high electron mobility transistors (HEMTs) with different backside vias are used to study thermal and high frequency characteristics. Connecting the source through the backside via to the backside of the wafer can effectively dissipate heat. A transistor with a backside via outside the active region is called an OSV (outside backside via) layout transistor; in addition to having a backside via outside the active region, there is an additional backside via in the middle source of active region. The device is called an ISV (internal backside via) layout transistor. The DC characteristics of the two transistors are presented at different temperatures, including thermal resistance analysis, and a small signal model was established to study the dependence of the intrinsic parameters of the two transistors on temperatures.
In addition, the 5G communication technology has a very high linearity requirement. This paper discusses the variation and influence of the linearity of different gate-to-source length (LGS) transistors. In general, the resistance is a linear component, and the larger the resistance, the greater the linearity of the transistor. In order to improve the linearity of GaN devices, AlGaN/GaN HMETs with different gate-to-source distance (LGS) layouts are designed to study DC characteristics, high frequency characteristics, large signal characteristics and linearity.
中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 氮化鋁鎵/氮化鎵材料特性 2
1.3 高頻氮化鎵元件發展現況與應用 6
1.4 高頻元件佈局分析與文獻回顧 11
1.5 研究動機與論文架構 17
第二章 不同背向穿孔佈局之AlGaN/GaN HEMTs 18
2.1 前言 18
2.2 元件佈局設計 18
2.3 元件直流和高頻特性 20
2.4 高溫環境特性 23
2.4.1 元件熱阻 23
2.4.2 元件導通電阻與脈衝量測電流 26
2.4.3 小訊號模型參數萃取 27
2.4.4 小訊號模型參數修正與分析 40
2.5 本章總結 49
第三章 不同閘極至源極距離佈局之 AlGaN/GaN HEMTs 50
3.1 前言 50
3.2 元件佈局設計 50
3.3 元件直流特性和高頻特性 52
3.4 元件之源極電阻量測與分析 57
3.5 元件大訊號功率特性 59
3.6 元件線性度分析 62
3.7 本章總結 69
第四章 結論 70
參考文獻 71
[1] Qorvo Inc., “The World’s First 5G RF Front-End Module,” Dec. 2017 [Online]. Available: https://www.microwavejournal.com/articles/29483-the-worlds-first-5g-rf-front-end-module. [Accessed July 19, 2019]
[2] Hongyu Yu and Tianli Duan, Gallium Nitride Power Devices, 1st ed. Pan Stanford Pub, 2017, ch.2.
[3] Ambacher, O., Foutz, B., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., et al., “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, pp. 334-344, Jan. 2000.
[4] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
[5] L. F. Eastman and U. K. Mishra, “The toughest transistor yet [GaN transistors],” IEEE Spectrum, vol. 39, no. 5, pp. 28-33, May 2002.
[6] Ingmar Kallfass, “How to Design Power Electronics, The HF in Power Semiconductor Modeling and Design,” Sep. 2015 [Online]. Available: https://www.keysight.com/upload/cmc_upload/All/3Sept15WebcastSlides.pdf. [Accessed July 19, 2019].
[7] Robert C. Fitch, Jr., Member, Dennis E. Walker, Jr., Member, Andrew J. Green, Stephen E. Tetlak, James K. Gillespie, Ryan D. Gilbert, Karynn A. Sutherlin, William D. Gouty, James P. Theimer, Glen D. Via, Kelson D. Chabak, and Gregg H. Jessen, “Implementation of High-Power-Density X -Band AlGaN/GaN High Electron Mobility Transistors in a Millimeter-Wave Monolithic Microwave Integrated Circuit Process,” IEEE Electron Device Lett. vol. 36, no. 10, pp. 1004-1007, Oct 2015.
[8] Yan Tang, Keisuke Shinohara, Dean Regan, Andrea Corrion, Member, David Brown, Joel Wong, Adele Schmitz, Helen Fung, Samuel Kim, and Miroslav Micovic, “Ultrahigh-Speed GaN High-Electron-Mobility Transistors With fT/fmax of 454/444 GHz,” IEEE Electron Device Lett. vol. 36, no. 6, pp. 549-551, Jun. 2015.
[9] Yasuhiro Murase, Kazunori Asano, Isao Takenaka, Yuji Ando, Hidemasa Takahashi, and Chiaki Sasaoka, “T-Shaped Gate GaN HFETs on Si With Improved Breakdown Voltage and fMAX,” IEEE Electron Device Lett. vol. 35, no. 5, pp. 524-526, May 2014.
[10] Philippe Altuntas, François Lecourt, Adrien Cutivet, Nicolas Defrance, Etienne Okada, Marie Lesecq, Stéphanie Rennesson, Alain Agboton, Yvon Cordier, Virginie Hoel, and Jean-Claude De Jaeger, “Power Performance at 40 GHz of AlGaN/GaN High-Electron Mobility Transistors Grown by Molecular Beam Epitaxy on Si(111) Substrate,” IEEE Electron Device Lett. vol. 36, no. 4, pp. 303-305, Apr. 2015.
[11] Xun Zheng, Matthew Guidry, Haoran Li, Elaheh Ahmadi, Karine Hestroffer, Brian Romanczyk, Steven Wienecke, Stacia Keller, and Umesh K. Mishra, “N-Polar GaN MIS-HEMTs on Sapphire With High Combination of Power Gain Cutoff Frequency and Three-Terminal Breakdown Voltage,” IEEE Electron Device Lett. vol. 37, no. 1, pp. 77-79, Jan. 2016.
[12] Ling Yang, Minhan Mi, Bin Hou, Hengshuang Zhang, Jiejie Zhu, Qing Zhu, Yang Lu, Meng Zhang, Yunlong He, Lixiang Chen, Xiaowei Zhou, Ling Lv, Xiaohua Ma, and Yue Hao, “Enhanced gm and fT With High Johnson’s Figure-of-Merit in Thin Barrier AlGaN/GaN HEMTs by TiN-Based Source Contact Ledge,” IEEE Electron Device Lett. vol. 38, no. 11, pp. 1563-1566, Nov. 2017.
[13] Michael L. Schuette, Andrew Ketterson, Bo Song, Edward Beam, Tso-Min Chou, Manyam Pilla, Hua-Quen Tserng, Xiang Gao, Shiping Guo, Patrick J. Fay, Huili Grace Xing, and Paul Saunier, “Gate-Recessed Integrated E/D GaN HEMT Technology With fT/fmax >300 GHz,” IEEE Electron Device Lett. vol. 34, no. 6, pp. 741-743, Jun. 2013.
[14] Brian P. Downey, David J. Meyer, D. Scott Katzer, Jason A. Roussos, Ming Pan, and Xiang Gao, “SiNx /InAlN/AlN/GaN MIS-HEMTs With 10.8 THz · V Johnson Figure of Merit,” IEEE Electron Device Lett. vol. 35, no. 5, pp. 527-529, May 2013.
[15] Diego Marti, Stefano Tirelli, Valeria Teppati, Lorenzo Lugani, Jean-François Carlin, Marco Malinverni, Nicolas Grandjean, and C. R. Bolognesi, “94-GHz Large-Signal Operation of AlInN/GaN High-Electron-Mobility Transistors on Silicon With Regrown Ohmic Contacts,” IEEE Electron Device Lett. vol. 36, no. 1, pp. 17-19, Jun. 2015.
[16] Chuan-Wei Tsou, Chen-Yi Lin, Yi-Wei Lian, and Shawn S. H. Hsu, “101-GHz InAlN/GaN HEMTs on Silicon With High Johnson’s Figure-of-Merit,” IEEE Trans. Electron Devices, vol. 62, no. 8, pp. 2675-2677, Aug. 2015.
[17] Chuan-Wei Tsou and Shawn S. H. Hsu, “Technologes of GaN Devices on Silicon for RF Applications,” Nano communication, vol. 24, no. 4, pp. 27-32, Apr. 2017.
[18] Qi Zhou, Wanjun Chen, Shenghou Liu, Bo Zhang, Zhihong Feng, Shujun Cai, and Kevin J. Chen, “Schottky-Contact Technology in InAlN/GaN HEMTs for Breakdown Voltage Improvement,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1075-1081, Mar. 2013.
[19] Chuan-Wei Tsou, Hsueh-Chun Kang, Yi-Wei Lian, and Shawn S. H. Hsu, “AlGaN/GaN HEMTs on Silicon With Hybrid Schottky-Ohmic Drain for RF Applications,” IEEE Trans. Electron Devices, vol. 63, no. 11, pp. 4218-4225, Nov. 2016.
[20] Qorvo Inc., “5 Things to Consider When Designing Fixed Wireless Access (FWA) Systems,” Apr. 2018 [Online]. Available: https://www.qorvo.com/design-hub/blog/5-things-to-consider-when-designing-fixed-wireless-access-fwa-systems. [Accessed July 19, 2019]
[21] R. Gaska, A. Osinsky, J. W. Yang, and M. S. Shur, “Self-Heating in High-Power AlGaN-GaN HFET’s,” IEEE Electron Device Lett. vol. 19, no. 3, pp. 89-91, Mar. 1998.
[22] Matteo Meneghini and Gaudenzio Meneghesso, Power GaN Devices, Materials, Applications and Reliability, Springer, 2017, pp. 3-4.
[23] Jungwan Cho, Daniel Francis, David H. Altman, Mehdi Asheghi, and Kenneth E. Goodson, “Phonon conduction in GaN-diamond composite substrates,” J. Appl. Phys., vol. 121, no. 5, pp. 055105-1-055105-8, Feb. 2017.
[24] Qingzhi Wu, Yuehang Xu, Jianjun Zhou, Yuechan Kong, Tangsheng Chen, Yan Wang, Fujiang Lin, Yu Fu, Yonghao Jia, Xiaodong Zhao, Bo Yan, and Ruimin Xua, “Performance Comparison of GaN HEMTs on Diamond and SiC Substrates Based on Surface Potential Model,” ECS J. Solid State Sci. Technol., vol. 6, issue 12, pp. Q171-Q178, Dec. 2017.
[25] Usha Gogineni1, Jesús A. del Alamo, and Christopher Putnam, “RF Power Potential of 45 nm CMOS Technology,” SiRF, New Orleans, LA, 2010, pp. 204-207.
[26] A. Khusro, M. S. Hashmi and A. Q. Ansari, “Empirical Device Scaling and RF Performance Perspective: A Small Signal Model for GaN High Electron Mobility Transistor,” CoCoNet, Astana, 2018, pp. 45-49.
[27] J. Vidkjær, S.A. Shevchenko, J. Würfl, M. J. Uren, K. Hirche, R. Jost, “Linearity Assessment of GaN Technology,” Abstract of ESA/ESTEC contract 20456/07/NL/IA.
[28] M. Hikita et al., “AlGaN/GaN power HFET on silicon substrate with source-via grounding (SVG) structure,” IEEE Trans. on Electron Devices, vol. 52, no. 9, pp. 1963-1968, Sep. 2005.
[29] A. M. Darwish, H. A. Hung and A. A. Ibrahim, “AlGaN/GaN HEMT With Distributed Gate for Channel Temperature Reduction,” IEEE Trans. Microwave Theory Tech., vol. 60, no. 4, pp. 1038-1043, April 2012.
[30] B. Poust et al., “Selective Growth of Diamond in Thermal Vias for GaN HEMTs,” CSICS, Monterey, CA, 2013, pp. 1-4.
[31] Y. Jia, Y. Xu and Y. Guo, “A Universal Scalable Thermal Resistance Model for Compact Large-Signal Model of AlGaN/GaN HEMTs,” IEEE Trans. Microwave Theory Tech., vol. 66, no. 10, pp. 4419-4429, Oct. 2018.
[32] C. Liu et al., “Breakthroughs for 650-V GaN Power Devices: Stable high-temperature operations and avalanche capability,” IEEE Power Electronics Magazine, vol. 2, no. 3, pp. 44-50, Sep. 2015.
[33] L. Yang and S. I. Long, “New method to measure the source and drain resistance of the GaAs MESFET,” IEEE Electron Device Lett., vol. 7, no. 2, pp. 75-77, Feb. 1986.
[34] G. Dambrine, A. Cappy, F. Heliodore and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory and Tech., vol. 36, no. 7, pp. 1151-1159, Jul. 1988.
[35] W. R. Curtice and M. Ettenberg, “A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 33, no. 12, pp. 1383-1394, Dec. 1985.
[36] K. W. Lee, Kwyro Lee, M. S. Shur, Tho T. Vu, P. C. T. Roberts and M. J. Helix, “Source, drain, and gate series resistances and electron saturation velocity in ion-implanted GaAs FET's,” IEEE Trans. Electron Devices, vol. 32, no. 5, pp. 987-992, May 1985.
[37] P. M. White and R. M. Healy, “Improved equivalent circuit for determination of MESFET and HEMT parasitic capacitances from "Coldfet" measurements,” IEEE Microwave and Guided Wave Letters, vol. 3, no. 12, pp. 453-454, Dec. 1993.
[38] M. Berroth and R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 38, no. 7, pp. 891-895, Jul. 1990.
[39] Frederick Emmons Terman, Radio Engineers' Handbook, 1st ed. McGraw-Hill book company, Inc, New York and London 1943, ch.2.
[40] J. Groszkowski, “The Temperature Coefficient of Inductance,” Proceedings of the Institute of Radio Engineers, vol. 25, no. 4, pp. 448-464, Apr. 1937.
[41] Jerzy Krupka, Marcin Zając, Robert Kucharski, and Daniel Gryglewski, “Dielectric properties of highly resistive GaN crystals grown by ammonothermal method at microwave frequencies, ” AIP Advances, vol. 6, issue 3, pp. 035313-1-035313-6, Mar. 2016.
[42] G. Meneghesso, G. Verzellesi, F. Danesin, F. Rampazzo, F. Zanon, A. Tazzoli, M. Meneghini, and E. Zanoni, “Reliability of GaN high-electron-mobility transistors: State of the art and perspectives,” IEEE Trans. Device Mater. Rel., vol. 8, no. 2, pp. 332-343, Jun. 2008.
[43] M. Meneghini et al., “Investigation of Trapping and Hot-Electron Effects in GaN HEMTs by Means of a Combined Electrooptical Method,” IEEE Trans. Electron Devices, vol. 58, no. 9, pp. 2996-3003, Sep. 2011.
[44] K. Zhang, Y. Kong, G. Zhu, J. Zhou, X. Yu, C. Kong, Z. Li, and T. Chen, ”High-Linearity AlGaN/GaN FinFETs for Microwave Power Applications,” IEEE Electron Device Lett., vol. 38, no. 5, pp. 615-617, May 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top