(3.234.221.67) 您好!臺灣時間:2021/04/11 14:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾華榮
研究生(外文):Hua-jung Chung
論文名稱:貧油丙烷於層流和紊流條件下之最小引燃能量量測
論文名稱(外文):Measures of lean propane-air on laminar and turbulent minimum ignition energies
指導教授:施聖洋
指導教授(外文):Shenq-yang Shy
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:47
中文關鍵詞:輻射熱損失效應最小引燃能量預混紊流燃燒
外文關鍵詞:minimum ignition energyradiation heat lossespremix turbulent combustion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:110
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對貧油丙烷空氣預混燃氣,定量量測其最小引燃能量(minimum ignition energy, MIE),研究目標在於測試貧油丙烷預混燃氣是否會如本實驗室先前使用甲烷燃氣時也存在一火花引燃轉折(ignition transition)現象。實驗於一大十字型預混紊流燃燒器(Shy et al. 2010)執行,在水平圓管兩端各配置一組三相十匹馬力馬達和特製風扇,由此一對反向旋轉風扇所產生之氣流並各經特製之空孔板,可在十字型燃燒器中央區域產生一150 × 150 × 150 mm3之近似等向性紊流場,其均方根紊流擾動速度u?值可高達8 m/s。我們使用高電壓脈衝引燃系統和Phantom v310高速攝影機,來量測MIE值和火核發展影像。結果顯示MIE值會隨紊流強度(u''/SL)之增加而逐漸增加,但當u?/SL值大於某臨界值時,MIE值會劇烈地增加,SL為層流燃燒速度。是故,使用丙烷燃氣同樣出現引燃轉折現象,轉折現象是與紊流強度有密切關係,此結果也顯示預混紊流燃燒確實存在不同燃燒型態。本研究另一目標為探討輻射熱損失效應對MIE值之影響,我們個別地添加輻射熱損失效應很強之二氧化碳和很弱之氮氣至貧油甲烷空氣預混燃氣(當量比phi = 0.7),以稀釋燃氣配比為59%CH4/41%CO2和44%CH4/56%N2,來使兩者具有同樣之SL = 0.1 m/s及絕熱火焰溫度約為1750 K,來進行實驗量測並作比對。結果顯示輻射熱損失效應對MIE值有一定程度的影響,在固定u''/SL ≈ 28時,比較具高輻射熱損失之CO2添加物案例和添加無輻射熱損失之N2案例,其MIE值差異約7%。本研究成果對火花點火引擎和燃氣渦輪機引燃系統之設計有重要之助益。
This thesis measures quantitatively the minimum ignition energy (MIE) of propane-air pre-mixtures at an equivalence ratio (phi) of 0.7, in order to examine the existence of ignition transition that has been found in methane-air pre-mixtures. The experiments are carried out in a stainless-steel cruciform turbulent premixed combustion facility (Shy et al. 2010), including a pair of the same 10-HP motors with the fans and perforated plates at the end of the horizontal vessel. A region of near-isotropic turbulence, roughly 150 × 150 × 150 mm3, can be created in the central area between two perforated plates, where the rms turbulent fluctuation velocity u'' ≈ 8 m/s. In order to acquire MIE and flame kernel images by using the high-voltage pulse discharge system and the high-speed CMOS camera (phantom v310) respectively. Before the critical value of turbulent intensity (u''/SL), MIE only increases gradually with u''/SL, but when u''/SL is greater than some critical value, the increases of MIE suddenly becomes drastic. Here SL is laminar flame speed. The phenomena also exist by using the propane-air mixture. It has proved that the ignition transition is related to the turbulent intensity, demonstrating the existence of different flame types in turbulence. On the other hand, another central idea of this thesis is that MIE are characterized by radiation heat losses (RHL), using the carbon dioxide with strong RHL (59%CH441%CO2) and the nitrogen with weak RHL (44%CH456%N2) are added individually to methane-air pre-mixtures (phi = 0.7), where the diluted mixture have similar SL = 0.1 m/s and adiabatic flame temperature (Tad ≈ 1750 K). Due to the effect of RHL, the difference value of MIE between the strong RHL CO2 case and the weak RHL N2 case is about 7 % at u''/SL ≈ 28. These findings can be applied to the ignition system design of engines and gas turbines.
摘要I
英文摘要II
誌謝III
目錄IV
圖目錄VII
符號說明X
第一章 前言1
1.1 研究動機1
1.2 問題所在2
1.3 解決方法3
1.4 論文架構3
第二章 文獻回顧4
2.1最小引燃能量之定義4
2.2預混紊流燃燒狀態圖4
2.3燃氣種類及濃度配比6
2.4壓力及溫度6
2.5電極材料及末端形狀7
2.6電極直徑和間距7
V
2.7濕度效應8
2.8電容與電感放電能量比8
2.9輻射熱損失9
2.10 實驗參數10
第三章 實驗設備與量測方法23
3.1十字型預混燃燒器23
3.2高電壓脈衝產生器24
3.3放電能量量測及計算24
3.4影像擷取系統25
3.5實驗步驟25
第四章 結果與討論29
4.1貧油丙烷之MIE29
4.1.1電極間距對MIE之影響29
4.1.2不同f、uʹ/SL及Ka之MIE30
4.1.3火核影像31
4.2輻射熱損失效應31
第五章 結論與未來工作44
5.1結論44
5.2未來工作44
VI
參考文獻46
[1]Lewis, B. and von Elbe, G. “Combustion, Flame and Explosions of Gases”, 3rd Ed., Academic Press, London (1987).
[2]Shy, S.S., Liu, C.C. and Shih, W.T. “Ignition Transition in Turbulent Premixed Combustion”, Combust. Flame 157, 341?350, 2010.
[3]Jomaas, G., Law, C.K. and Bechtold, J.K. “On Transition to Cellularity in Expanding Spherical Flames”, J. Fluid Mech. 583, 1?26, 2007.
[4]Shy, S.S., Yang, S.I., Lin, W.J. and Su, R.C. “Turbulent Burning Velocities of Premixed CH4/Diluent/Air Flames in Intense Isotropic Turbulence with Consideration of Radiation Losses”, Combust. Flame 143, 106?118, 2005.
[5]Ko, Y., Anderson, R.W. and Arpaci, V.S. “Spark Ignition of Propane?Air Mixtures Near the Minimum Ignition Energy: Part I. An Experimental Study”, Combust. Flame 83, 75?87, 1991.
[6]Huang, C.C., Shy, S.S., Liu, C.C. and Yan, Y.Y. “A Transition on Minimum Ignition Energy for Lean Turbulent Methane Combustion in Flamelet and Distributed Regimes”, Proc. Combust. Inst. 31, 1401?1409, 2007.
[7]Shy, S.S., Shih, W.T. and Liu, C.C. “More on Minimum Ignition Energy Transition for Lean Premixed Turbulent Methane Combustion in Flamelet and Distributed Regimes”, Combust. Sci. Technol. 180, 1735?1747, 2008.
[8]Borghi, R. “On the Structure and Morphology of Turbulent Premixed Flames”, Recent Advances in the Aerospace Sciences, Ed. C. Casci, 117?138, New York, Plenum (1985).
[9]Bray, K. N. C. “Turbulent Flows with Premixed Reactants”, Turbulent Reacting Flows, Eds. Libby, P. A. & Williams, F. A., 115?183, New York, Springer?Verlag (1980).
[10]Peters, N. “Laminar Flamelet Concepts in Turbulent Combustion”, Proc. Combust. Inst. 21, 1231?1250, 1986.
[11]Williams, F. A., Combustion Theory, 2nd Ed., Addison?Wesley, Redwood City (1985).
[12]Blanc, M.V., Guest, P.G., Elbe, G.V. and Lewis, B. “Ignition of Explosive Gas Mixtures by Electric Sparks. III. Minimum Ignition Energies and Quenching Distances of Mixtures of Hydrocarbons and Ether with Oxygen and Inert Gases”, Symposium (International) on Combustion 3, 363?367, 1949.
[13]Moorhouse, J., Williams, A. and Maddison, T.E. “An Investigation of the minimum Ignition Energies of Some C1 to C7 Hydrocarbons”, Combust. Flame 23, 203?213, 1974.
[14]Ziegler, G.F.W., Wagner, E.P. and Maly, R.R. “Ignition of Lean Methane?Air Mixtures by High Pressure Glow and Arc Discharges”, Proc. Combust. Inst. 20, 1817?1824, 1984.
[15]Scull, W. E. “Relation Between Inflammables and Ignition Sources in Aircraft Environments”, NACA TN-2227 (1951).
[16]Kono, M., Hatori, K. and Iinuma, K. “Investigation on Ignition Ability of Composite Sparks in Flowing Mixtures”, Proc. Combust. Inst. 20, 133?140, 1984.
[17]Blanc, M.V., Guest, P.G., Elbe, G.V. and Lewis, B. “Ignition of Explosive Gas Mixtures by Electric Spark. I. Minimum Ignition Energies and Quenching Distances of Mixtures of Methane, Oxygen, and Inert Gases”, J. Chem. Phys. 15, 798?802, 1947.
[18]Ono, R., Nifuku, M., Fujiwara, S., Horiguchi, S. and Oda, T. “Minimum Ignition Energy of Hydrogen?Air Mixture: Effects of Humidity and Spark Duration”, J. Electrost. 65, 87?93, 2007.
[19]Yuasa, T., Kadota, S., Tsue, M., Kono, M., Nomura, H. and Ujiie, Y. “Effects of Energy Deposition Schedule on Minimum Ignition Energy in Spark Ignition of Methane/Air Mixtures”, Proc. Combust. Inst. 29, 743?750, 2002.
[20]石偉達,“預混紊流燃燒:火花引燃機制與加氫效應之定量量測”,國立中央大學能源工程研究所,碩士論文,2007年。
[21]李尚軍,“火花引燃機制與散佈狀燃燒型態之實驗研究”,國立中央大學機械工程研究所,碩士論文,2008年。
[22]Yang, S.I. and Shy, S.S. “Global Quenching of Premixed CH4/Air Flames: Effects of Turbulent Straining, Equivalence Ratio, and Radiative Heat Loss”, Proc. Combust. Inst. 29, 1841?1847, 2002.
[23]Shy, S.S., I, W.K. and Lin, M.L. “A New Cruciform Burner and its Turbulence Measurements for Premixed Turbulent Combustion Study”, Exp. Therm. Fluid Sci. 20, 105?114, 2000.
[24]Egolfopoulos, F.N., Zhu, D.L. and Law, C.K. “Experimental and Numerical Determination of Laminar Flame Speeds: Mixtures of C2-Hydrocarbons with Oxygen and Nitrogen”, Symposium (International) on Combustion 23, 471?478, 1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔