跳到主要內容

臺灣博碩士論文加值系統

(35.172.111.71) 您好!臺灣時間:2022/05/23 10:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鐘翌菁
研究生(外文):Yi-Ching Chung
論文名稱:具螢光粉冷卻之液冷式高功率 LED
論文名稱(外文):High Power LED with Liquid Cooling System on Phosphor
指導教授:楊宗勳楊宗勳引用關係孫慶成孫慶成引用關係
指導教授(外文):Tsung-Hsun YangChing-Cherng Sun
學位類別:碩士
校院名稱:國立中央大學
系所名稱:照明與顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:104
語文別:中文
論文頁數:74
中文關鍵詞:水冷螢光粉LED
外文關鍵詞:Water-CoolingPhosphorLED
相關次數:
  • 被引用被引用:1
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本論文將多顆藍光晶粒與 YAG 螢光粉封裝成一集成式白光 LED,以此光源當實驗樣品,減少光源光展量,同時分析在相同驅動條件下針對有無螢光粉散熱之差異,並評估其散熱效果與光色特性。不同於以往單純只針對 LED 基板進行散熱,本研究在 LED 的測試中利用水冷系統做為散熱裝置,同時對 LED 基板與螢光粉進行散熱,實驗各種不同形式的散熱架構,量測其光度、色度、熱度等資訊。對於頻譜的分析,與針對螢光粉散熱前相比,液冷內嵌式實驗架構能有效控制 LED 頻譜的位移與形變,以降低長時間點亮之色彩不穩定。溫度方面,亦能有效減緩 LED 溫度的上升,將 16 W COB 光源基板溫度控制於 40 度以下,發揮其散熱功效。另外光強度與光視效能的分析,亦能比針對螢光粉散熱前提升至少 10% 以上的實質效果,證實針對螢光粉進行散熱之重要性。
In this study, a cluster white LED with YAG phosphor and blue die array is analyzed. Under the same injection power, the cooling for phosphor resin or not is compared with considerations of heat dissipation and optical characteristics. The breakthrough is that a water cooling system is utilized to make a heat dissipation of the substrate and the phosphor resin rather than a heat sink to attach to the substrate of the LED. In the experiments, several set ups for heat dissipation are tested and analyzed with optical, chromatic, and thermal measurements. With the spectral analysis, the water cooling system for cooling the substrate and phosphor resin can decrease the spectral distortion and shift. Accordingly, the chromatic stability can be improved with the cooling system and method. For the 16 W COB light source, the temperature rising rate of the LED is reduced, and the Tb can be controlled under 40°C which means the heat dissipation is efficient enough. Furthermore, the light intensity and luminous efficacy of the light source can be enhanced at least 10% with phosphor cooling which echoes the importance of heat dissipation of phosphor resin.
摘要 i
Abstract ii
致謝 iii
目錄 v
圖索引 viii
表索引 xii
第一章 緒論 1
1-1 照明發展歷程 1
1-2 LED 發展介紹 2
1-3 LED 於舞台燈、投射燈之應用與市場分析 5
1-4 研究動機與目的 6
1-5 論文大綱 8
第二章 基本理論 9
2-1 白光 LED 受熱之影響 9
2-1-1 藍光 LED 受熱之影響 9
2-1-2 螢光粉受熱之影響 10
2-2 LED 光源特性分析與探討 12
2-2-1 LED 光展量 13
2-2-2 LED 光通量密度 14
2-3 幾何光學 16
2-3-1 反射定律與折射定律 16
2-3-2 Fresnel 方程式 18
2-4 輻射光度學 19
第三章 液冷式 LED 之實驗架構及流程 21
3-1 高功率集成式 LED 光源封裝流程 21
3-2 液冷系統運作流程 23
3-3 液冷式 LED 之實驗架構 26
3-4 腔體設計概念 33
第四章 液冷式 LED 之實驗量測結果 35
4-1 9 瓦 COB 光源之實驗與分析 35
4-1-1 藍寶石載板腔體之實驗 35
4-1-2 玻璃腔體之實驗 40
4-2 16 瓦 COB 光源之實驗與分析 44
4-3 實驗驗證 48
4-4 與市售光源之比較與分析 52
4-5 二次光學元件之設計 55
第五章 結論 59
參考文獻 61
附錄 67
7-1 3D 印表機列印行前轉檔流程 67
中英名詞對照表 71

[1]林川發,科學發展,435,36-41,2009.
[2]工業技術研究院 ITRI, LED 照明產業應用趨勢分析,http://www.taiwan
greenenergy.org.tw/files/Paper/2007 12905528.pdf.
[3]經濟部能源局,http://web3.moeaboe.gov.tw/ECW/business/news/News. aspx?kind=1&;menu_id=41&;news_id=3468.
[4]H. J. Round, “A note on carborundum,” Electr. World 49, 309 (1907).
[5]N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga (As1− xPx) junctions,” Appl. Phys. Lett, 82-83 (1962).
[6]S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. 64, 1687-1689 (1994).
[7]S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. 62, 2390-2392 (1993).
[8]S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. 69, 4056-4058 (1996).
[9]S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story 2nd (Springer, Berlin Heidelberg, 2000).
[10]S. Nakamura, M. Senoh, N. Iwasa, and S.-I. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Appl. Phys. 34, 797-799 (1995).
[11]S. Nakamura, T. Mukai, and M. Senoh, “High-power GaN pn junction blue-light-emitting diodes,” Appl. Phys. 30, 1998-2001 (1991).
[12]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi,“Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” U.S. Patent, US5998925 (1999).
[13]J. K. Kim and E.F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express 16, 21835-21842 (2008).
[14]Cree, Inc., First to Break 300 Lumens-Per-Watt Barrier, http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/300LPW-LED-barrier.
[15]孫慶成,光電科技概論,初版,全華圖書出版股份有限公司,台北市,中華民國九十七年。
[16]S. Muthu, F. J. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333-339 (2002).
[17]S. Muthu, “Controlling method and system for RGB based LED luminary,” U.S. Patent, US6507159 (2003).
[18]A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
[19]T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same,” U.S. Patent, US6686676 B2 (2004).
[20]A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” U.S. Patent, US6685852 (2004).
[21]Y. Shimizu, K. Sakano, Y. Noguchi and T. Moriguchi,“Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,”U.S. Patent, US5998925 (1999).
[22]Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1-3 (2009).
[23]LEDinside, LED舞檯燈中國市場的新起點, http:// www.ledinside.com.tw
/news/2012 0413-20528.html (2012).
[24]N. Narendran and Y. M. Gu, “Life of LED-based white light sources,” IEEE J. Display Technology 1, 167-171 (2005).
[25]T. Cheng, X. Luo, S. Huanga and S. Liub, “Thermal analysis and optimization of multiple LED packaging based on a general analytical solution,” Int. J. Thermal Science 49, 196-201 (2010).
[26]G. P. Peterson and Y. Wang, “Investigation of a novel flat heat pipe,” J. Heat Transfer. 127,165-170 (2005).
[27]T. Y. Chung, S. C. Chiou, C. Yu, C. C. Sun, T. H. Yang , and S. Y. Chen, “Study of temperature distribution within pc-WLEDs Using the remote-dome phosphor package,” IEEE Photonics 7, 1-11 (2015).
[28]H. C. Hsu, S. J. Wu, J. W. Su, J. S. Huang, and S. L. Fu, “Thermal design for high power arrayed LED heat-dissipating system,” IEEE, 222-225 (2013).
[29]M.-T. Sheen and M.-D. Jean, “Design and simulation of micro-tube device in thermal performance for high power LED cooling system,” IEEE Electronics, 3186-3190 (2012).
[30]J. S. Park and C. S. Huh, “A study on improved efficiency and cooling LED lighting using a seebeck effect,” IEEE Power Eng. Soc. 1-3 (2012)
[31]吳信美,白光發光二極體色彩表現穩定技術之研究,國立中央大學光電科學研究所碩士論文,中華民國一百年。
[32]鄭翰翔,白光LED加速老化之光輻射特性之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
[33]郭浩中、賴芳儀、郭守義,LED 原理與應用,五南圖書出版股份有限公司,台北市,中華民國一百年。
[34]E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, 2003).
[35]D. A. Neamen and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2003).。
[36]B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure an Applied Optics, 2007).
[37]Mehmet, C. Becker, S. Weaver, and J. Petroski, “Thermal management of LEDs: package to system,” Proc. SPIE 5187, 64 (2004).
[38]M. Arik, S. Weaver, C. Becker, M. Hsing, and A. Srivastava, “Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes,” ASME/IEEE 3, 6-11 (2003).
[39]何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
[40]黃瑞琳,多激發光波長與溫度效應之螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
[41]J. Jiao and B. Wang, “Etendue concern for automotive headlamp using LEDs,” Proc. of SPIE 5187, 234-242(2004).
[42]B. Wang, T. Iwaki and J. Jiao, “Studies for headlamp optical design using LEDs,” SAE Technical (2004).
[43]C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang,” Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Express 31, 2193-2195 (2006).
[44]R. W. Boyd, Radiometry and the Detection of Optical Radiation (John Wiley and Sons, New York , 1984).
[45]鄭佳申,白光LED 之一階與二階光學設計,國立中央大學光電所碩士論文,中華民國九十七年。
[46]蔡直佑,高光效多功能 LED 投射光形之研究,國立中央大學光電所博士論文,中華民國一零四年。
[47]E. Hecht, Optics (Addison Wesley, San Francisco, 2002).
[48]V. N. Mahajan, Optical Imaging and Aberrations: Part I Ray Geometrical Optics (SPIE Press, Washington, 1998).
[49]孫慶成,光電工程概論,全華圖書股份有限公司,新北市,中華民國一百零一年。
[50]程勉儒,高功率白光 LED 適應性車燈之光學設計,國立中央大學光電所碩士論文,中華民國一百零三年。
[51]吳健君,LED 投射聚光型燈具與封裝晶粒大小之關係,國立中央大學光電所碩士論文,中華民國一百零二年。
[52]璦司柏,http://www.icprotect.com.tw/articles-13.html.
[53]Thermaltake, http://tw.thermaltake.com/home.aspx
[54]甄何平、蔣金波,用於大功率 LED 光源的菲涅爾透鏡,CN102901045 A (2013).
[55]A. Lo and J. Arenberg, “New architecture for space telescopes uses Fresnel lenses,” SPIE Opt. Eng. (2006).
[56]Netfabb, http://www.netfabb.com/company.php.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊