(3.231.229.89) 您好!臺灣時間:2019/12/15 20:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:阮亮凱
研究生(外文):Liang-Kai Juan
論文名稱:以非熱電漿處理CuO/ZnO/Al2O3觸媒應用於合成氣合成甲醇之研究
論文名稱(外文):Plasma-treated CuO/ZnO/Al2O3 Catalyst for Methanol Synthesis from Syngas
指導教授:張木彬張木彬引用關係
指導教授(外文):Moo Been Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:108
中文關鍵詞:生質能替代燃料合成氣液化非熱電漿經電漿處理觸媒甲醇
外文關鍵詞:Methanol (MeOH)Biomass energy.Alternative fuelSyngas liquefactionNonthermal plasmaPlasma-treated catalyst
相關次數:
  • 被引用被引用:2
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
甲醇為許多化學品合成之原料,近來更被視為優良能量載體,就甲醇合成程序而言,善用觸媒可降低反應所需活化能並增進反應速率。非熱電漿技術於觸媒之結合或應用乃近十年方興起之研究領域,目前國際學術界利用此新穎技術於轉化合成氣為甲醇之研究尚未得見。在傳統共沈澱法之觸媒製備過程包括:沉澱、洗滌、過濾、烘乾、鍛燒、及還原等步驟,本研究在觸媒製備過程中引入一個特殊過程:『電漿處理』,將其插入上述鍛燒製備程序之前後、或用其取代鍛燒程序,並以此觸媒在高壓高溫下進行合成氣轉化甲醇之實驗,研究重點在於瞭解電漿處理觸媒之可行性。本研究所測試的觸媒包括:商用、未經電漿處理、經氧氣電漿處理和經氫氣電漿處理等觸媒。商用及未經電漿處理觸媒經催化實驗結果顯示,本研究所自行製備之觸媒具有較高活性;比較有無氧氣電漿處理(鍛燒前)之結果顯示,可降低最佳活性溫度,於235℃、40 atm條件下,提升甲醇選擇率及產率,同時亦降低了副產物的選擇率;以氫氣電漿處理來取代鍛燒之觸媒,CO轉化率高達97%,但主要產物並非甲醇而是CO2及CH4,其活性已經截然不同。針對了電漿處理氣氛及程序做更進一步的探討,結果發現在鍛燒前氫氣電漿處理及鍛燒後氧氣電漿處理,其甲醇選擇性及甲醇產率都低於未經電漿處理;反之,鍛燒前氧氣電漿及鍛燒後氫氣電漿處理,皆優於未經處理觸媒之甲醇選擇性及甲醇產率。經由XRD、ICP及比表面積量測,證實以非熱電漿處理可輔助觸媒,分解前驅物的特性、較大之比表面積及經電漿處理過後可具有較小氧化銅顆粒。此外,以電漿處理CuO/ZnO/Al2O3觸媒具有低耗能特性,所需電量僅為11 kJ/g-cat.。綜合而言,本研究證實以非熱電漿處理確實可修飾觸媒的表面特性,但並非其所改變之特性完全有利於轉化合成氣為甲醇,乃必須慎選電漿處理方法以利觸媒催化反應,反之亦可能導致相反之結果。
In recent years, nonthermal plasma has been utilized as a novel technique to enhance the activity of catalyst. The study applied this novel technique to the preparation of the catalyst for methanol synthesis Such study has yet reported so far. The main objective of this study is to investigate the feasibility of using nonthermal plasma to modify the performance of methanol synthesis catalyst. In terms of methanol synthesis by catalysis, the catalyst is generally prepared via coprecipitation, and consists of precipitation, washing, filtration, drying, calcination and reduction. In this study, plasma treatment can be applied before/after calcination or used to replace calcinations. A variety of catalysts have been experimentally tested in this study, i.e., commercial, self-made (without plasma treatment), O2-plasma-treated, and H2-plasma-treated catalysts. The experimental results indicate the self-made catalyst could achieve better performance than the commercial one. On the other hand, the treatment of O2 plasma (before calcination) could shift the optimum temperature for methanol synthesis from 255oC to 235oC and increase the selectivity of MeOH at the same time. As for the H2-plasma-treated (replace calcination) catalyst, although the best CO conversion rate obtained in this study is as high as 97%, the main products are CO2 and CH4 instead of the desired product, MeOH. As a further study on applying different plasma treatments and processes, it reveals that the selectivity and the yield of MeOH from H2-plasma-treated catalyst before calcinations and O2-plasma-treated catalyst after calcinations are lower than that of self-made catalysts. That is to say, the selectivity and yield of MeOH from H2-plasma-treated catalyst before calcinations and O2-plasma-treated catalyst after calcinations are better than that of self-made catalysts. To get insights into the influence of plasma treatment on the physical and chemical properties of the catalyst, the measurements of XRD, ICP and surface area are also conducted in this study. The results indicate that the plasma treatment could decompose the precursors of the active components. Moreover, after plasma treatment, larger surface area and smaller CuO grain size could be achieved as well. Besides, it is worth noticing that the energy required for the treatment of Cu/ZnO/Al2O3 catalyst is only 11 kJ/g-cat, which is economically competitive. In conclusion, it has been demonstrated in this study that the plasma treatment could alter the physical and chemical properties of the catalyst. However, the alteration is not always beneficial for methanol synthesis. Therefore, one should be careful in selecting the background gas of plasma so that the plasma treatment process is beneficial to catalyst performance.
摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 X
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 甲醇的重要性及其發展 3
2-2 甲醇合成觸媒及其製備方法 6
2-3 甲醇合成之研究現況 9
2-4 電漿特性及類型 13
2-5 電漿放電對於觸媒表面物化特性之影響 17
第三章 實驗方法與設備 21
3-1 研究流程 21
3-2 觸媒製備 23
3-2-1 傳統共沈澱法 23
3-2-2 氧氣電漿處理 23
3-2-3 氫氣電漿處理 25
3-3 合成甲醇之方法及步驟 26
3-4 觸媒特性鑑定分析 28
3-4-1 氮氣吸附儀(ASAP) 28
3-4-2 感應耦合電漿原子放射光譜儀(ICP-AES) 29
3-4-3 高解析薄膜X光繞射儀(X-ray Diffractometer) 29
3-4-4 氧化亞氮脈衝吸附(N2O-pulse) 30
3-4-5 掃瞄式電子顯微鏡(SEM) 31
3-5 儀器設備、氣體及藥品 32
第四章 實驗結果與討論 36
4-1 背景實驗 36
4-1-1 觸媒製備程序的影響 36
4-1-2 無添加觸媒 39
4-2 商用觸媒 41
4-2-1 時間的影響 41
4-2-2 空間流速的影響 44
4-2-3 溫度的影響 46
4-3 自製觸媒 49
4-3-1 溫度的影響 49
4-3-2 壓力的影響 52
4-4 電漿處理觸媒 55
4-4-1 氧氣電漿處理 55
a. 溫度的影響 55
b. 壓力的影響 58
4-4-2 氫氣電漿處理 60
a. 溫度的影響 60
4-5 電漿處理氣氛及程序的影響 63
4-5-1 鍛燒前電漿處理 66
a. 氧氣電漿 66
b. 氫氣電漿 69
4-5-2 鍛燒後電漿處理 72
a. 氧氣電漿 72
b. 氫氣電漿 75
4-6 觸媒鑑定 78
4-6-1 觸媒表面結構特性分析 78
4-6-2 ICP-AES元素組成分析 80
4-6-3 XRD晶相分析 82
4-6-4 氧化亞氮脈衝吸附 85
4-6-5 SEM分析 87
第五章 結論與建議 91
5-1 結論 91
5-2 建議 92
參考文獻 93
Bae, J.W.; Potdar, H. S.; Kang, S.H.; Jun, K.W., “Coproduction of methanol and dimethyl ether from biomass-derived syngas on a Cu-ZnO-Al2O3/γ-Al2O3 hybrid catalyst,” Energy & Fuels, 22, 223-230, 2008.
Baltes, C.; Vukojevic, S.; Schuth F., “Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis,” Journal of Catalysis, 258 , 334-344, 2008.
BP, “BP statistical review of world energy,” London, UK, 2002. (Available from http:www.bp.com/centres/energy2002)
Chen, H.Y.; Lau, S.P.; Chen, L.; Lin, J.; Huan, C.H.A.; Tan, K.L.; Pan, J.S., “Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis,”Applied Surface Science, 152, 193-199, 1999.
Chen, M. H.; Chu, W.; Dai, X. Y.; Zhang, X. W., “New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene,” Catalysis Today, 89, 201-204, 2004.
Cranmore, R. G.; Stanton, E., “Natural gas in: Dawe R.A.,” editor. Modern Petroleum Tehcnology, Upstream Volume. Chishester: Institute of Petroleum, Johy Wiley and Sons Ltd, 337-408, 2000.
Eliasson, B. and Kogelschatz, U., “Nonequilibrium volume plasma chemical processing,” IEEE Transactins on Plasma Science, 19, 1063-1077, 1991.
Eliasson, B.; Hirth, M.; Kogelschatz, U., “Ozone synthesis from oxygen in dielectric barrier discharges,” Journal of Physics D: Applied Physics, 20, 1421-1437, 1987.
Fei, J.H.; Tang, X.J.; Huo, Z.Y.; Lou, H.; Zheng, X.M., “Effect of copper content on Cu-Mn-Zn/zeolite-Y catalysts for the synthesis of dimethyl ether from syngas,” Catalysis Communications, 7, 827-831, 2006.
Kim, H. H., “Nonthermal plama processing for air-pollution control: a historical review, current issues, and future prospects,” Plasma Processes and Polymers, 1, 91-110, 2004.
Koeppel, R.A.; Baiker, A.; Wokaun, A., “Copper zirconia catalysts for the synthesis of methanol from carbon-dioxide - influence of preparation variables on structural and catalytic properties of catalysts,” Applied Catalysis A: General, 84, 77, 1992.
Kuai, P.-Y.; Liu, C.-J.; Huo, P.-P., “Characterization of CuO-ZnO catalyst prepared by decomposition of carbonates using dielectric-barrier discharge plasma,” Catal Lett, 129, 493-498, 2009.
Lange, J. P., “Methanol synthesis: a short review of technology improvements,” Catalysis Today, 64, 3-8, 2001.
Lee, H. M., Juan, L.K., Chen, H.-L., Chang, M.B., Chen, S.H., Li, H.Y., Tzeng, C.C., “Plasma-treated catalyst for methanol synthesis from syngas,” IEEE Trans. Plasma Sci. (2009/05). (revision)
Li, J.L.; Zhang, X.G.; Inui, T., “Improvement in the catalyst activity for direct synthesis of dimethyl ether from synthesis gas through enhancing the dispersion of CuO/ZnO/-Al2O3 in hybrid catalysts,” Applied Catalysis A: General, 147, 23-33, 1996.
Li, Z.H.; Tian, S.X.; Wang, H. T.; Tian, H. B., “Plasma treatment of Ni catalyst via a corona discharge,” Journal of Molecular Catalysis A: Chemical, 211, 149-153, 2004.
Lihong, H.; Wei, C.; Junqiang, X.; Jingping, H.; Min, Y., “Effect of glow discharge plasma on rhodium-based catalyst for oxygenates synthesis,” Front. Chemistry Energy China, 1(1), 16-19, 2007.
Liu, C. J.; Vissokov, G. P.; Jang, B. W.L., “Catalyst preparation using plasma technologies,” Catalysis Today, 72, 173-184, 2002.
Liu, C.J.; Zou, J.; Yu, K.; Cheng, D.; Han, Y.; Zhan, J.; Ratanatawanate, C.; Jang B. W.L., “ Plasma application for more environmentally friendly catalyst preparation,” Pure Appl. Chem., 78(6), 1227-1238, 2006.
Liu, X.Z.; Wang, J.G.; Liu, C.J.; He, F.; Eliasson, B., “Partial oxidation of methane to syngas over Ni-Fe/Al2O3 catalyst with plasma enhanced activity,” Reaction Kinetics and Catalysis Letters, 79, 69-76, 2003.
Liu,C.J.; Wang, J.X.; Yu, K.L.; Eliasson, B.; Xia, Q.; Xue, B.; Zhang, Y.H., “Floating double probe characteristics of non-thermal plasmas in the presence of zeolite,” Journal of Electrostatics, 54, 149, 2002.
Mao, D.; Yang, W.; Xia, J.; Zhang, B.; Song, Q.; Chen, Q., “Highly effective hybrid catalyst for the direct synthesis of dimethyl ether from syngas with magnesium oxide-modified HZSM-5 as a dehydration component,” Journal of Catalysis, 230, 140-149, 2005.
Moradi, G.R.; Ghaneia, R.; Yaripour, F., “ Comparison of the performance of different hybrid catalysts for direct synthesis of dimethyl ether from synthesis gas,” React. Kinet. Catal. Lett., 92(1), 137-145, 2007.
Moradi, G.R.; Nosrati, S.; Yaripor, F., “Effect of the hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas,” Catalysis Communications,8 ,598-606, 2007.
Moretti, G.; Ferraris, G.; Fierro, G.; Jacono, M. L., “An XPS study of the reduction process of CuO–ZnO–Al2O3 catalysts obtained from hydroxycarbonate precursors,” Surface and Interface Analysis, 38, 224-228, 2006.
Nakamura, J.; Uchijima, T.; Kanai, Y.; Fujitani, T., “The role of ZnO in Cu/ZnO methanol synthesis catalysts,” Catalysis Today, 28, 223-230, 1996
Ratanatawanate, C.; Macias, M.; Jang, B. W.L., “Promotion effect of the nonthermal RF plasma treatment on Ni/Al2O3 for benzene hydrogenation,” Ind. Eng. Chem. Res., 44(26), 9868-9874, 2005.
Raudaskoski, R.; Niemela, M.V.; Keiskia, R.L., “The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2,” Topics in Catalysis, 45, 1-4, 2007.
Satterfield, C. N., “Heterogeneous catalysis in industrial practice,” 2nd Ed., McGraw-Hill, New York, 1991.
Shen, G.C.; Fujita, S.I.; Matsumoto, S.; Takezawa, N., “Steam reforming of methanol on binary Cu/ZnO catalysts: effect of preparation condition upon precursors, surface structure and catalytic activity,” Journal of Molecular Catalysis A: Chemical, 124, 123-136, 1997.
Takeguchi, T.; Yanagisawa, K.I.; Inui, T.; Inoue, M., “Effect of the property of solid acid upon syngas-to-dimethyl ether conversion on the hybrid catalysts composed of Cu-Zn-Ga and solid acids,” Applied Catalysis A: General, 192, 201-209, 2000.
Tijm, P.J.A.; Waller, F.J.; Brown, D.M., “Methanol technology developments for the new millennium,” Applied Catalysis A: General, 221, 275-282, 2001.
Wang J.G.; Liu C.J.; Zhang Y.P.; Yu, K. L.; Zhu, X. L.; He, F., “Partial oxidation of methane syngas over glow discharge plasma treated Ni-Fe/Al2O3 catalyst,” Catalysis Today, 89, 183-191, 2004.
Yang, C.; Ma, Z.; Zhao, N.; Wei, W.; Hu, T.; Sun, Y. “Methanol synthesis from CO2-rich syngas over a ZrO2 doped CuZnO catalyst,” Catalysis Today, 115, 222-227, 2006.
Yang, R.; Yu, X.; Zhang, Y.; Li, W.; Tsubaki, N. “A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2,” Fuel, 87, 443-450, 2008.
Yang, R.; Zhang, Y.; Iwama, Y.; Tsubaki, N., “Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts,” Applied Catalysis A: General, 288, 126-133, 2005.
Yoo, K.S.; Kim, J.H.; Park, M.J.; Kim, S.J., Joo, O.S.; Jung, K.D., “Influence of solid acid catalyst on DME production directly from synthesis gas over the admixed catalyst of Cu/ZnO/Al2O3 and various SAPO catalysts,” Applied Catalysis A: General, 330, 57-62, 2007.
Zhu, Y. R.; Li, Z. H.; Zhou, Y. H.; Lv, J.; Wang, H. T., “Plasma treatment of Ni and Pt catalysts for partial oxidation of methane,” Reaction Kinetics and Catalysis Letters, 87, 33-41, 2006.
Zou, J.J.; Liu, C.J.; Zhang, Y.P., “Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment,” Langmuir, 22, 2334-2339, 2006.
李灝銘,「以低溫電漿去除揮發性有機物之研究」,中央大學環境工程研究所博士論文,中壢市,2001。
高正雄,電漿化學,復漢出版社,台南,1991。
賀黎明、沈召軍,「甲烷的轉化和利用」,化學工業出版社,2005。
萬其正,「石化工業製程技術」,高立圖書有限公司,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔