[1] J. A. Sethian, Level Set Methods, Cambridge University Press, California, 1996.
[2] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, Los Angeles, 2003.
[3] A. R. Mansouri, “Region tracking via level set PDEs without motion computation,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.24, pp.947-961, July 2002.
[4] H. Haxthausen, “Infrared photography of subcutaneous veins,” British Journal of Dermatology, vol.45, pp.506-511, 1933.
[5] Y. Ding, D. Zhuang, and K. Wang, “The study of hand vein recognition method.” Proceedings of the IEEE International Conference on Mechatronics & Automation, pp.2106-2110, 2005.
[6] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” Int’l J. Comp. Vis., vol. 1, pp.321–331, 1987.
[7] L. Cohen and I. Cohen, “Finite-element methods for active contour models and balloons for 2-D and 3-D images,” IEEE Trans. Patt. Anal. Mach. Intell., vol.15, pp.1131–1147, 1993.
[8] R. Malladi, J. A. Sethian, and B. C. Vemuri, “Shape modeling with front propagation: a level set approach,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 17, pp.158–175, 1995.
[9] T. Chan and L. Vese, “Active contours without edges,” IEEE Trans. Imag. Proc., vol. 10, pp.266–277, 2001.
[10] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” Int’l J. Comp. Vis., vol.22, pp.61–79, 1997.
[11] C. Xu and J. Prince, “Snakes, shapes, and gradient vector flow,” IEEE Trans. Imag. Proc., vol.7, pp.359–369, 1998.
[12] C. Li, C. Xu, C. Gui, and M. D. Fox, “Level set evolution without re-initialization: A new variational formulation,” In IEEE Conference on Computer Vision and Pattern Recognotion (CVPR), vol. 1, pp.430–436, 2005.
[13] A. Tsai, A. Yezzi, and A. S. Willsky, “Curve evolution implementation of the mumford-shah functional for image segmentation, denoising, interpolation, and magnification,” IEEE Trans. Imag. Proc., vol.10, pp.1169–1186, 2001.
[14] N. Paragios and R. Deriche, “Geodesic active regions and level set methods for supervised texture segmentation,” Int’l J. Comp. Vis., vol.46, pp.223–247, 2002.
[15] L. Vese and T. Chan, “A multiphase level set framework for image segmentation using the mumford and shah model,” Int’l J. Comp. Vis., vol. 50, pp.271–293, 2002.
[16] Z. Hou, “A review on MR image intensity inhomogeneity correction,” Int. J. Biomed. Imag., vol.2006, pp.1–11, 2006.
[17] U. Vovk, F. Pernus, and B. Likar, “A review of methods for correction of intensity inhomogeneity in MRI,” IEEE Trans. Med. Imag. 26(3), pp.405–421, 2007.
[18] E. Lewis and N. Fox, “Correction of differential intensity inhomogeneity in longitudinal MR images,” Neuro. Image, 23(3), pp.75–83, 2004.
[19] B. H. Brinkmann, A. Manduca, and R. A. Robb, “Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction,” IEEE Trans. Med. Imag., 17(2), pp.161–171, Apr. 1998.
[20] J. Sled, A. Zijdenbos, and A. Evans, “A nonparametric method for automatic correction of intensity nonuniformity in MRI data,” IEEE Trans. Med. Imag., 17(1), pp.87–97, 1998.
[21] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy, “Magnetic resonance image tissue classification using a partial volume model,” Neuroimage, vol.13, pp.856–876, 2001.
[22] B. Dawant, A. Zijdenbos, and R. Margolin, “Correction of intensity variations in MR images for computer-aided tissues classification,” IEEE Trans. Med. Imag., 12(4), pp.770–781, 1993.
[23] C. Meyer, P. Bland, and J. Pipe, “Retrospective correction of intensity inhomogeneities in MRI,” IEEE Trans. Med. Imag., 14(1), pp.36-41, 1995.
[24] P. Vemuri, E. G. Kholmovski, D. L. Parker, and B. E. Chapman, “Coil sensitivity estimation for optimal SNR reconstruction and intensity inhomogeneity correction in phased array MR imaging,” Inf. Process. Med. Imag.: 19th Int. Conf. (IPMI 2005), Glenwood Springs, CO, 2005.
[25] W. Wells, E. Grimson, R. Kikinis, and F. Jolesz, “Adaptive segmentation of MRI data,” IEEE Trans. Med. Imag., 15(4), pp.429–442, 1996.
[26] K. Leemput, F. Maes, D. Vandermeulen, and P. Suetens “Automated model-based bias field correction of MR images of the brain,” IEEE Trans. Med. Imag., 18(10), pp.885–896, 1999.
[27] M. Styner, C. Brechbuhler, G. Szekely, and G. Gerig “Parametric estimate of intensity inhomogeneities applied to MRI,” IEEE Trans. Med. Imag., 19(3), pp.153–165, 2000.
[28] R. Guillemaud and M. Brady “Estimating the bias field of MR images,” IEEE Trans. Med. Imag., vol.16, pp.238–251, 1997.
[29] A. H. Andersen, Z. Zhang, M. J. Avison, and D. M. Gash, “Automated segmentation of multispectral brain MR images,” J. Neurosci. Meth., vol.122, pp.13–23, 2002.
[30] D. Pham and J. Prince, “Adaptive fuzzy segmentation of magnetic resonance images,” IEEE Trans. Med. Imag., 18(9), pp.737–752, 1999.
[31] C. Li, R. Huang, Z. Ding, C. Gatenby, D. Metaxas, and J. Gore, “A variational level set approach to segmentation and bias correction of medical images with intensity inhomogeneity,” MICCAI., vol. LNCS 5242, pp.1083-1091, 2008.
[32] C. Li, C. Xu, C. Gui, and M.D. Fox, “Level set evolution without re-initialization: A new variational formulation,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol.1, pp.430–436, 2005.
[33] C. Li, C. Kao, J. Gore, and Z. Ding, “Implicit active contours driven by local binary fitting energy,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.1-7, 2007.
[34] H. Knutsson and C. F. Westin, “Normalized and Differential Convolution: Methods for Interpolation and Filtering of Incomplete and Uncertain data,” CVPR., pp.515-523, 1993.
[35] X. Li and S. Guo, ”The Fourth Biometric - Vein recognition,” Pattern Recognition Techniques, Technology and Applications, pp.537-546, 2008.
[36] L. Wang and G. Leedham, “Near- and Far-Infrared Imaging for Vein Pattern Biometrics,” IEEE International Conference on Video and Signal Based Surveillance (AVSS’06), 2006.
[37] C. Lin and K. Fan, “Biometric Verification Using Thermal Images of Palm-Dorsa Vein Patterns,” IEEE Trans. Circuits Syst. Video Techn., 14(2), pp.199-213, 2004.
[38] Li Xiaoxia, “Numerical Analysis and Experimental Research on Laser Induced Thermal Effect in Bio-tissues,” Tianjin University, Ph.D Dissertation, 2004.
[39]S. Zhao, Y. Wang, and Y. Wang, “Extracting Hand Vein Patterns from Low-Quality Images: A New Biometric technique Using Low-Cost Devices,” IEEE, 4th International Conference on Image and Graphics, 2007
[40] Sergio Fantini’s Group, ‘Near-infrared spectroscopy for the study of biological tissue,” Department of Biomedical Engineering, Tufts University, 1998, Available from: http://omlc.ogi.edu/spectra/hemoglobin/summary.html
[41]Valery V. Tuchin, Handbook of optical biomedical diagnostic, Saratov State University, ch7, p425, 2002.
[42] J. Hashimoto, “Finger Vein Authentication Technology and its Future,” VLSI Circuits, 2006. Digest of Technical Papers. 2006 Symposium on, pp.5-8, 2006.
[43]鍾豐橋, “人體手足末端血管紅外線影像擷取與量化分析系統之建立,”南台科技大學, 碩士論文, 2006..[44] D. J. Williams and M. Shah, “A fast algorithm for active contours and curvature estimation,” CVGIP: Image Understanding, vol.55, no.1, pp.14-26, 1992.
[45] K.-M. Lam and H. Yan, “Fast greedy algorithm for active contours,” Electronics Lett., vol.30, no.1, pp. 21-23, 1994.
[46] K.-M. Lam and H. Yan, “Locating head boundary by snakes,” Proc. of Int. Symp. Speech, Image Processing and Neural Networks, vol.1, pp.17-20, 1994.
[47] A. R. Mirhosseini and H. Yan, “An optimally fast greedy algorithm for active contours,” Proc. of IEEE Int. Symp. Circuits and Systems, vol.2, pp.1189-1192, 1997.
[48] L. D., Cohen, "On active contour models and balloons," CVGIP: Image Understand, vol.53, pp.211-218, 1991.
[49] S. Osher and J. A. Sethian, “Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations,” J. Comp. Physics, vol.79, pp.12-49, 1988.
[50] G. Sapiro and A. Tannenbaum, “Affine invariant scale-space,” Int. J. Comput. Vision, vol.11, pp.25-44, 1993.
[51] J. Deng and H. T. Tsui, “A fast level set method for segmentation of low contrast noisy biomedical images,” Pattern Recognition Lett., vol.23, no.1-3, pp.161-169, 2002.
[52] F. Precioso and M. Barlaud, “B-spline active contour with handling of topology changes for fast video segmentation,” EURASIP Journal on Applied Signal Processing, vol.6, pp.555-560, 2002.
[53] R. Goldenberg, R. Kimmel, E. Rivlin, and M. Rudzsky, " Fast Geodesic Active Contours. IEEE Trans. on Pattern Analysis and Machine Intelligence," vol.10, pp.1467-1475, 2001.
[54] D. Mumford and J. Shah. "Optimal approximation by piecewise smooth functions and associated variational problems," Communications on Pure and Appl. Math., vol.42, pp.577-685, 1989.
[55] L. Vese, "Multiphase object detection and image segmentation," Geometric Level set Methods in Imaging, Vision and Graphics, pp.175-194, 2003.
[56] J. Piovano, M. Rousson, and T. Papadopoulo, "Efficient segmentation of piecewise smooth images," Scale Space and Variational Methods in Computer vision(SSVM 2007), pp. 709-720, 2007.
[57] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, “A variational level set approach to multiphase motion,” J. Comput. Phys., vol.127, pp.179–195, 1996.
[58] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.
[59] L. C. Evans, Partial Differential Equations, American Mathematical Society, 2010.
[60] C. Yu et al., “A research on extracting low quality human finger vein pattern characteristics,” International Conference on Bioinformatics and Biomedical Engineering, pp.1876–1879, 2008.
[61] Z. Lian, Z. Rui, C. Yu, “Study on the Identity Authentication System on Finger Vein,” International Conference on Bioinformatics and Biomedical Engineering, pp.1905-1907, 2008.
[62] M. Kono, H. Ueki, and S. Umemura, "Near-Infrared Finger Vein Patterns for Personal Identification," Appl. Opt., vol.41, pp.7429-7436, 2002.
[63] D. Hejtmankova, R. Dvořak, M. Drahansky, and F. Orsag, “A New Method of Finger Veins Detection,” International Journal of Bio-Science and Bio-Technology, vol.1, no.1, pp.11-15, Dec. 2009.
[64] N. Miura, A. Nagasaka, and T. Miyatake, "Feature Extraction of finger-vein patterns based on repeated line tracking and its Application to Personal Identification," Machine Vision and Applications, vol.15, no.4, pp.194-203, 2004.