(3.233.219.101) 您好!臺灣時間:2020/01/24 06:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:阮啟偉
論文名稱:汽車車體用鋁合金板材、擠型材之研究
指導教授:歐炳隆
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:126
中文關鍵詞:擠型滾軋彎曲性熱處理微結構
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的材料有三種,一為滾軋材6022與6111鋁合金,一為擠型材6N01鋁合金。6022、6111合金在探討材料的彎曲性,變動參數有(1)不同化學組成、固溶溫度(530℃、550℃)、淬火速率(淬水、空冷、爐冷)及低溫時效(30℃、50℃、70℃×1~10000min)。6N01分為兩方向研究:(1)利用不同化學組成(標準成份、過量Mg、過量Si、過量Cu)、預熱溫度(480℃、530℃)、淬火速率(淬水、空冷、爐冷)及175℃人工時效下,各個時間的彎曲性優劣情形(2)不同化學組成、預時效(-10℃~70℃ ×1~3000min)對人工時效析出的影響。
實驗中利用微差掃描熱分析(DSC)及電阻量測來研究合金的時效析出舉動,穿透式電子顯微鏡(TEM)觀察合金晶內、晶界析出與PFZ大小,掃描式電子顯微鏡觀察材料破裂形態,彎曲測試材料的變形能力,並以拉伸試驗(Tensile Test)來量測合金降伏強度、最大抗拉強度及延伸率的高低。
6022、6111合金在各種固溶、淬火、化學組成、低溫時效後經彎曲測試,雖然在某些條件下強度有大幅增加,但是仍然擁有低降伏強度與高延伸率,所以合金不致於破裂。
實驗結果得知6N01合金強度愈低、延伸率愈高時,可得到較佳的彎曲性,因為降伏強度(YS)代表了塑性變形的難易程度,當YS低時,只需施加應力,就可以讓材料產生形變;低預熱溫度可增加彎曲性。6N01PB、6N01PS、6N01PM合金在-10~30℃預時效,再經人工時效後強度下降,但是於50~70℃對材料有正面影響。

There are three kinds of aluminum alloys investigated in this paper. One is extruded 6N01 alloy, others are rolled 6022、6111 alloys. To discuss the bending ability of 6022,6111 alloys with the experiment the parameters including of (1)different chemical compositions,solution temperature,cooling rate after solution and (2)low temperature aging.
For 6N01 alloy, we are interested in finding(1)bending ability by using different chemical compositions,re-heating temperature,cooling rate after re-heating and 175℃ artificial aging for different time (2) the influence of different chemical compositions,pre-aging on the aging precipitation behavior after artificial aging.
Precipitation behaviors of the alloys were analyzed using different scanning calorimetry (DSC) and by measuring the resistivity, observation of fracture type and microstructure by scanning electron microscope (SEM) and transmission electron microscope (TEM), formability attained by bending test. The tensile test was performed to obtain the mechanical properties of the alloys.
The results indicate that the bending ability of 6022,6111 alloys with different chemical compositions,solution temperature,cooling rate after solution and low temperature aging is good, and they have high elongation. 6N01 alloys with lower strength and higher elongation can get better formability. Low re-heating temperature increases bending ability.6N01PB,6N01PS,6N01PM alloys pre-aged for -10~30℃ for long time will have negative effect after artificial aging, but positive effect for 50~70℃.

謝誌.......................................................I
Abstract...................................................Ⅱ
摘要.......................................................III
目錄.......................................................Ⅳ
圖表目錄...................................................Ⅷ
第一章 緒論................................................1
一、序言...............................................1
二、理論基礎與論文回顧.................................2
2-1 Al-Mg-Si合金簡介................................2
2-2 Al-Mg-Si合金的析出硬化熱處理....................2
2-3 Al-Mg-Si合金的時效硬化過程......................3
2-3-1 Al-Mg-Si合金的時效析出序列與機構............3
2-3-2 Al-Mg-Si合金的兩段時效......................4
2-3-3 Al-Mg-Si合金的析出強化機構..................6
2-4 合金元素的影響..................................7
2-4-1 添加Cu的影響................................7
2-4-2 添加過量Mg、Si的影響........................7
2-5 熱處理與組成對微結構的影響......................8
2-5-1 彎曲成型....................................8
2-5-2 合金元素的影響..............................8
2-5-3 自然時效、人工時效的影響....................9
第二章 本文................................................10
一、前言.................................................10
二、實驗步驟與方法.......................................11
2-1 材料..............................................11
2-2 低溫時效、化學組成、固溶.淬火條件對滾軋材6022、
6111鋁合金延伸率和彎曲性的影響...................11
2-2-1 滾軋過程.....................................11
2-2-2 微差掃描熱分析(DSC)..........................12
2-2-3 拉伸試驗(Tensile Test).......................12
2-2-4 彎曲測試(Bending Test).......................13
2-3 不同預熱.淬火、化學組成及人工時效對6N01鋁合金彎曲性的
影響.............................................14
2-3-1 熱處理.......................................14
2-3-2 突破壓力量測(Breakout Pressure)..............14
2-3-3 微差掃描熱分析(DSC)..........................15
2-3-4 拉伸試驗(Tensile Test).......................15
2-3-5彎曲測試(Bending Test)........................15
2-3-6 掃描式電子顯微鏡(SEM)........................15
2-3-7 穿透式電子顯微鏡觀察(TEM)....................15
2-4 不同化學組成.預時效對人工時效時6N01鋁合金析出舉動之影
響...............................................16
2-4-1 熱處理.......................................16
2-4-2 微差掃描熱分析(DSC)..........................17
2-4-3 拉伸試驗(Tensile Test).......................17
2-4-4 穿透式電子顯微鏡觀察(TEM)....................17
2-4-5 電阻值量測...................................18
三、結果與討論..........................................19
3-1 低溫時效、化學組成(過量Mg、Si、Cu)、固溶.淬火條件對滾軋
材6022、6111鋁合金延伸率和彎曲性的影響............19
3-1-1 低溫時效對滾軋材6022、6111合金的影響..........19
3-1-1-1 DSC量測結果...............................19
3-1-1-2 拉伸試驗的結果............................20
3-1-1-3 彎曲測試的結果............................20
3-1-2 化學組成(過量Mg、Si、Cu)對滾軋材6022、6111合金的影響
3-1-2-1 拉伸試驗的結果............................20
3-1-2-2 彎曲測試的結果............................21
3-1-3 固溶.淬火條件對滾軋材6022、6111合金的影響....21
3-1-3-1 拉伸試驗的結果............................21
3-1-3-2 彎曲測試的結果............................21
3-2 人工時效、化學組成(過量Mg、Si、Cu)、預熱.淬火對擠型材
6N01鋁合金延伸率和彎曲性的影響....................22
3-2-1 人工時效對擠型材6N01合金的影響................22
3-2-1-1 DSC量測結果...............................22
3-2-1-2 拉伸試驗的結果............................22
3-2-1-3 彎曲測試的結果............................22
3-2-1-4 掃描式電子顯微鏡觀察的結果................23
3-2-1-5 穿透式電子顯微鏡觀察的結果................24
3-2-2 化學組成(Mg、Si、Cu)對擠型材6N01合金的影響....24
3-2-2-1 拉伸試驗的結果............................24
3-2-2-2 彎曲測試的結果............................24
3-2-3 預熱.淬火條件對擠型材6N01合金的影響..........25
3-2-3-1 拉伸試驗的結果............................25
3-2-3-2 彎曲測試的結果............................25
3-2-3-3 穿透式電子顯微鏡觀察的結果................25
3-3 不同組成(過量Mg、Si)與預時效對人工時效時擠型材6N01合金析
出舉動之影響......................................26
3-3-1 DSC量測結果...................................26
3-3-2 電阻量測的結果................................27
3-3-3 穿透式電子顯微鏡觀察的結果....................28
3-3-4 拉伸試驗的結果................................29
四、結論................................................31
五、參考文獻............................................32
圖表....................................................35

[1]日本輕金屬學會委員, ”鋁合金之組織與性質”, 日本輕金屬學會,
pp.278, 1991
[2]Lars Halldahl , Thermochimica Acta214, pp.33, 1993
[3]D.W.Pashley, M.H.Jacobs, J.T.Vietz, ”The Basci Processes
Affecting Two-step Aging in an Al-Mg-Si Alloy”,
Philosophical Magazine, vol.16, pp. 51-76, 1967
[4]G.Thomas, ”The Aging Characteristics of Aluminium Alloys”,
Journal of the Institute of Metals, vol.90, pp.57-63, 1961
[5]菅野幹宏, 鈴木壽, ”Transmission electron micrographs caused
by some unfavorble factors in aluminum base alloys”, 輕金
屬, vol.30,No.11, pp.653-663, 1980
[6]Bin-Lung Ou, Yoshikazu Tsuzuki, Kunihiko kishino, Katsutoshi
Sasaki, Hajime Watanabe, ”Age-Hardenability of a 6000-Series
(Al-Mg-Si)Alloy”, Furukawa Review, No.14, pp.157-162, 1995
[7]Toshiya Hirata, Shigeru Matsuo, Trans JIM, vol.13, pp.231,
1972
[8]I. Kovacs, J. Lendvai, E. Nagy, Acta Metallurgica, vol.20,
pp.975, 1972
[9]Yoshio Baba, Akira Takashima, “Influence of Composition on
the Two-Stage Aging of Al-Mg-Si Alloys”, Trans JIM, vol.10,
pp.196-204, 1969
[10]鈴木壽, 菅野幹宏, 白石泰久, ”Effects of excess magnesium
or silicon on the two-step aging behavior of Al-Mg2Si
alloys”, 日本輕金屬, vol.29, No.5, pp.197-203, 1979
[11]鈴木壽, 菅野幹宏, 伊藤吾朗, 日本輕金屬, vol.30, pp.609, 1980
[12]R.J. Livak, ”The effects of copper and chromium on the
aging response of dilute Al-Mg-Si alloys”, Metallurgical
Transactions, vol.13A, pp.1318-1321, July 1982
[13]D.W. Pashley, J.W.Rhodes,A.Sendorek, ”Delayed aging in Al-
Mg-Si alloys :Effect on structure and mechanical
properties”, Journal of the Institute of
Metals,vol.94,pp.41-48,1966
[14]鈴木 壽,菅野 幹宏,白石 泰久,犒 健三,”Effects of copper
addition on aging phennomanon”, 輕金屬, vol.29, No.12,
pp.575-580, 1979
[15]Yoshio Baba, Akira Takashima, ”Influence of composition on
the two -stage aging of Al-Mg-Si alloys”, Trans.JIM,
vol.10, pp.196-204, 1968
[16]Mahoto Takeda, Fumiyoshi Ohkubo, Tomohisa Shirai, Kouichiro
Fukui, “Precipitation behaviour of Al-Mg-Si ternary
alloys”, Materials Science Forum, vols.217-222, pp.815-
820, 1996
[17]柳川政洋, 安倍睦, 大家正二郎, “Optimization for the bake-
hardenability of Al-Mg-Si alloys”, 輕金屬學會, vol.46, 第86
回春期大會, pp.27-28, 1996
[18]R.K. Wyss and L.W.Blazek, “Influence of excess Si on
strength and toughness in Al-Mg-Si alloys”, Materials
forum vols.217-222, pp.1783-1788, 1996
[19]L. Zhen, S.B. Kang, ”Deformation and fracture behavior of
two Al-Mg-Si alloys”, Metallurgical and Materials
Transactions A, vol.28A, pp.1489-1497, July 1997
[20]劉維人, “低溫預時效對擠型用Al-Mg-Si合金高溫時效舉動影響 之
研究“, 國立中央大學機械工程學系碩士論文, 1999
[21]高國瑜, “汽車車體骨架用6000系鋁合金低溫預時效與擠型條件之研
究“, 國立中央大學機械工程學系碩士論文, 2000

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔