(18.207.240.230) 您好!臺灣時間:2020/07/09 10:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:陳仕舉
研究生(外文):Shih-Jyu Chen
論文名稱:醋酸丙烯酯之液-固相轉移催化合成及其水解研究
論文名稱(外文):The liquid-solid phase transfer catalyzed acetate substitution of allyl chloride to synthesize allyl acetate and the liquid-liquid phase transfer hydrolysis of allyl acetate to synthesizes allyl alcohol
指導教授:王天財
指導教授(外文):tien-tsai Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:120
中文關鍵詞:液-固相轉移催化醋酸丙烯酯
外文關鍵詞:Allyl acetateliquid-solid phase transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討氯化丙烯之液-固相轉移催化醋酸根取代以合成醋酸丙烯酯並探討醋酸丙烯酯之液-液相轉移催化水解以合成丙烯醇。考慮氯化丙烯、醋酸鈉、相轉移催化劑和溶劑之液-固相轉移催化系統之物理與化學程序,衍導得醋酸丙烯酯總生成速率方程式。該式中影響醋酸丙烯酯之生成速率因素包括季銨鹽相轉移催化劑結構(陽離子結構與陰離子結構)、相轉移催化劑劑量、攪拌速率、溫度等。將這些因素對總生成速率之影響詳加實驗,並以該總生成速率方程式解釋之。

醋酸丙烯酯之適當生產條件有兩組,其一為以三頸瓶為反應器在常壓下生產,此需添加溶劑以提高反應溫度,而採用醋酸丙烯酯(產物)為溶劑,可免去溶劑之分離。該適當生產條件為氯化丙烯0.5 mole,醋酸鈉0.55 mole,醋酸丙烯酯0.5 mole,碘化四丁基銨0.025 mole,攪拌速率500 rpm,溫度設定為起始溫度70 ℃,每隔半小時升5 ℃,1小時後溫度達80 ℃後維持此溫度至反應結束。在此組條件下反應4小時之產率達99 %以上。其二為使用Parr 4564M型高壓反應器,不需添加溶劑。條件為氯化丙烯0.5 mole,醋酸鈉0.55 mole,碘化四丁基銨0.0025 mole,攪拌速率500 rpm,溫度設定為80 ℃並維持此溫度至反應結束。在此組條件下反應4小時之產率達99 %以上。

至於醋酸丙烯酯之水解合成丙烯醇方面,因為該反應速率很快,所以考慮以較為溫和的條件來生產,以溫度約30 ℃與常壓下來進行反應。適當生產條件為醋酸丙烯酯0.3 mole,氫氧化鈉0.3 mole,水1.8 mole,溫度30 ℃,轉速500 rpm。在此組條件下反應40分鐘後之產率達99 %以上。
The liquid-solid phase transfer catalyzed acetate substitution of allyl chloride to synthesize allyl acetate and the liquid-liquid phase transfer hydrolysis of allyl acetate to synthesizes allyl alcohol were studied. The physical and chemical processes were considered to derive the overall production rate equation of allyl acetate. The factors affecting the production rate of allyl acetate can be inspected with the overall rate equation. They are amounts and structures of phase transfer catalyst, stirring speed and reaction temperature. And the experimental results of the influences of the factors on the production rate of allyl acetate can be explained with the overall rate equation.

A set of suitable conditions for producing allyl acetate using three-necked bottle under atmospheric pressure is allyl chloride 0.5 mole, sodium acetate 0.55 mole, allyl acetate 0.5 mole, tetra-n-butyl ammonium iodide 0.025 mole, stirring speed 500 rpm, reaction program as initial temperature 70 ℃, then increasing rate 5 ℃/ 30 min and final temperature 80 ℃ . Under this set of condition, 99 % yield can be achieved within the reaction time of 4 hours. Another set of suitable conditions without solvent for producing allyl acetate using Parr 4564M reactor is stirring speed 500 rpm, allyl chloride 0.5 mole, sodium acetate 0.55 mole, tetra-n-butyl ammonium iodide 0.0025 mole, reaction temperature 80 ℃. Under this set of condition, 99 % yield can be achieved at the reaction time of 4 hours.

As for the liquid-liquid phase transfer catalyzed hydrolysis of allyl acetate to synthesize allyl alcohol. A set of the suitable conditions is allyl acetate 0.3 mole, sodium hydroxide 0.3 mole, water 1.8 mole, reaction temperature 30 ℃, stirring speed 500 rpm. Under this set of condition, reaction 40 minutes yield rate achieve 99 %.
中文摘要….... i
英文摘要 ii
誌謝…… iii
目錄…… iv
圖目錄.... viii
表目錄.... x
符號說明 xi

第一章 緒論 1
1-1 相轉移催化之起源與定義 1
1-2 相轉移催化之原理 1
1-2-1 液-液相轉移催化 2
1-2-2 液-固相轉移催化 2
1-3 相轉移催化之系統形態 3
1-4 相轉移催化劑之種類 4
1-5 醋酸丙烯酯之用途與合成 6
1-5-1 醋酸丙烯酯之用途 6
1-5-2 醋酸丙烯酯之合成 6
1-6 丙烯醇之用途與合成 7
1-6-1 丙烯醇之用途 7
1-6-2 丙烯醇之合成 8
1-7 本研究之動機與主旨 9
第二章 理論 11
2-1 親核取代反應 11
2-1-1 單分子親核取代反應 11
2-1-2 二分子親核取代反應 12
2-1-3 相轉移催化劑之親核取代反應 13
2-2 液-固相轉移催化系統之化學程序與質傳程序 13
2-2-1 相轉移催化劑之陰離子為氯離子( )之化學程序與質傳程序 13
2-2-2 相轉移催化劑之陰離子為碘離子( )之化學程序與質傳程序 14
2-3 液-固相轉移催化系統中醋酸丙烯酯之總生成速率方程式 15
2-3-1 相轉移催化劑之陰離子為氯離子( )之醋酸丙烯酯總生成速率方程式 15
2-3-2 相轉移催化劑( )之助催化效果及反應中間物( )之近似穩定態 19
2-3-3相轉移催化劑之陰離子為碘離子( )之醋酸丙烯酯總生成速率方程式 22
2-4 影響醋酸丙烯酯之總生成速率之因素 23
2-4-1 相轉移催化劑結構之影響 23
2-4-2 相轉移催化劑劑量之影響 23
2-4-3 攪拌速率之影響 23
2-4-4 溫度之影響 23

第三章 實驗部分 26
3-1 藥品 26
3-1-1 實驗及分析用藥品 26
3-1-2 相轉移催化劑 27
3-1-3相轉移催化劑之製備 27
3-2 實驗裝置及分析儀器 29
3-2-1 實驗裝置 29
3-2-2 氣相層析儀 32
3-2-3 導電度計 32
3-3 氣相層析儀(GC)之校正曲線及樣品分析 32
3-3-1 GC之校正曲線 32
3-3-2 GC之分析條件 33
3-3-3 樣品分析 33
3-4 實驗之操作 33
3-5 實驗步驟 33
3-5-1 不含催化劑及溶劑之醋酸丙烯酯合成實驗 34
3-5-2 相轉移催化劑結構對液-固相轉移催化合成醋酸丙烯酯影響之實驗 34
3-5-3 攪拌速率對液-固相轉移催化合成醋酸丙烯酯影響之實驗 35
3-5-4 溫度對液-固相轉移催化合成醋酸丙烯酯影響之實驗 35
3-5-5 相轉移催化劑碘化四丁基銨劑量對液-固相轉移催化合成醋酸丙烯酯影響之實驗 35
3-5-6 醋酸鈉過量比例對液-固相轉移催化合成醋酸丙烯酯影響之實驗 35
3-5-7 以液-固相轉移催化方式於密閉及開放系統合成醋酸丙烯酯之適當條件 36
3-5-8 水量對醋酸丙烯酯水解之影響實驗 36
3-5-9 添加相轉移催化劑對醋酸丙烯酯水解之影響實驗 37

第四章 結果與討論 38
4-1 無催化劑及溶劑之醋酸丙烯酯合成 38
4-2 相轉移催化劑結構對液-固相轉移催化合成醋酸丙烯酯之影響 38
4-3 攪拌速率對液-固相轉移催化合成醋酸丙烯酯之影響 43
4-4 溫度對液-固相轉移催化合成醋酸丙烯酯影響 46
4-5 相轉移催化劑碘化四丁基銨劑量對液-固相轉移催化合成醋酸丙烯酯影響之實驗 51
4-6 醋酸鈉過量比例對液-固相轉移催化合成醋酸丙烯酯影響 57
4-7 以液-固相轉移催化方式於密閉及開放系統合成醋酸丙烯酯之適當條件 60
4-8 水量對醋酸丙烯酯水解之影響實驗 68
4-9 水量對醋酸丙烯酯水解之影響實驗 70

第五章 結論 72
參考文獻 74
附錄一 79
附錄二 84
附錄三 85
[1] Starks C. M., Liotta C., Phase Transfer Catalysis. Principles and Techniques., Academic Press, U S, 1978.

[2] Jarrouse J., “The Influence of Quaternary Ammonium Chlorides on the Reaction of Labile Hydrogen Compounds and Chloride-Substituted Chlorine Derivatives” , C. R. Hebd. Seances Acad. Sci. Ser., C 232, 1424 (1951).

[3] Starks C. M., “Phase-transfer Catalysis. I. Heterogeneous Reaction Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts”, J. Am. Chem. Soc., 93(1), 195 (1971).

[4] 朱紫瑛,「醋酸丙烯酯之相轉移催化水解以合成丙烯醇及該法應用於其它醋酸酯之水解之研究」,國立中央大學化工碩士論文(1995)。

[5] 張詠鈞,「氯化戊烷之相轉移催化醋酸根取代以合成醋酸戊酯之研究」,國立中央大學化工碩士論文(1998)。

[6] Angeletti E., Tundo P., Venturello P., “Gas-Liquid Phase-Transfer Catalysis: Catalytic and Continuous Transesterification Reaction”, J Org. Chem., 48, 4106-8 (1983).

[7] 吳和生,「液-固-液三相反應動力學之應用-醚酯類」,第十五屆台灣區觸媒及反應工程研討會論文集(1997)。

[8] 周子卿,「有機金屬催化氫化以合成環己烷之研究」,國立中央大學化工碩士論文(1999)。

[9] Tundo P. and Venturello P., “Silica Gel Supported Phosphonium Salts as Micellar and Phase-Transfer Catalysis”, Tetrahedron Lett. 21, 2581 (1984).

[10] Starks C. M., “Selecting a Phase Transfer Catalysis”, Chemtech, 110 (1980).

[11] Hodge P., Sherrington D. C., “Polymer-supported Reaction in Organic Synthesis”, John Wiley and Sons (1980).

[12] 徐金榮,「葡萄糖之有機金屬相轉移催化氫化研究」,國立中央大學化工碩士論文(1994)。

[13] Kirk B.S, and D. F. Othmer, ”Encyclopedia of Chemical Technolgy”, 3rd ,291-310 (1978)

[14] Lewandowski, G.; Bartkowiak, M.; Milchert, E., “Low-waste technology of glycerine epichlorohydrin production”, Institute of Organic Chemical Technology, Szczecin University of Technology, Szczecin, Pol. Oxidation Communications , 31(1), 108-115(2008)
[15] Kishali, Nurhan; Polat, M. Fatih; Altundas, Ramazan; Kara, Yunus.,” A novel one-pot conversion of allyl alcohols into primary allyl halides mediated by acetyl halide”, Department of Chemistry, Faculty of Arts and Sciences, Ataturk University, Erzurum, Turk. Helvetica Chimica Acta, 91(1), 67-72(2008)


[16] Heravi, M. M.; Behbahani, F. K.; Daroogheha, Z.; Oskooie, H. A.,” Bismuth(III) nitrate-catalyzed solvent-free acetylation of alcohols and phenols with acetic anhydride.”, Department of Chemistry, School of Sciences, Alzahra University, Vanak, Tehran, Iran. Russian Journal of Organic Chemistry ,45(7), 1108-1109(2009)


[17] Jin, Lin; Li, Shanji; Wang, Dongyun.,” Synthesis of unsaturated carboxylate using resin as catalyst.”, Department of Mathematics and Physics, Lincang Teachers College, Lincang, Peop. Rep. China. Guangdong Huagong, 34(10), 46-48(2007)

[18] 湯朝洲,「丙烯基氯之相轉移催化醋酸跟取代反應以合成醋酸丙烯酯之研究」,國立中央大學化工碩士論文(1994)

[19] Mark H. F., D. F. Othmer, C. G. Overberber and G. T. Seaborg, ”Kirk-Othmer Encyclopedia of Chemical Technolgy”, 4th ed. Vol. 2, 144(1991)

[20] Fairbairn A. W.,H. A. Cheney and A. J. Cherniavsky “Commerical Scale Manufacture of Allyl Chloride and Allyl Alcohol from Propylene”, Chem. Eng. Prog., Vol. 43, 280(1947)

[21] Yamagishi K., “Synthesis of Glycerin”, Chem. Econ. Eng. Rev., Vol.6(7), 40(1974)

[22] Nagatao N.,U. S. Pat. 4, 634, 784(1987)

[23] Penningto B. T., “Allyl Alcohol Production Using Moiten Nitrate Salt Catalysts”, U. S. 4, 785, 134(1988)

[24] Nishino, Hiroshi, Takahashi, Fumikazu; Manabe, Takanori. “Preparation of Allyl Alcohol by Hydrolysis of Allyl Allyl Acetate”, Jpn. Kokai Tokkyo Koho. JP 02, 49, 743(1990)

[25] Wang T. T., Huang T. C., Yeh M. Y., “Benzyl Acetate from Phase Transfer Catalyzed Acetate Displacement of Benzyl Chloride”, Chem.Eng Comm. 100, 135 (1991).
[26] Herman A. Yee, Harvey J. Palmer, S. H. Chem, “Solid-Liquid Phase Transfer Catalysis”, Chemical Engineering Progress, 33 (1987).

[27] McMurry, “Organic Chemistry”, Cole Publishing Company, Montery, California, 307 (1984).

[28] Morrison R. T., Boyd. R. N., “Organic Chemistry”, Allyn and Bacon, Inc., Boston, Fifth Edition (1987).

[29] 張其晃,「有機鹵化物與季銨鹼之親核雙取代反應研究」,國立中央大學化工碩士論文(1991)。

[30] Forster D., J. Chem. Soc., Chem. Commun., 918 (1975).

[31] Landini D., Maia A., Montanari F., J. Chem. Soc., Chem. Comm., 112 (1977).

[32] Feldman D., Lew D. S., Rabinovitz M., “Nucleophilic Aromatic Substitution by Hydroxide Ion under Phase-Transfer Catalysis Conditions Fluorine Displacement in Polyflurobenzene”, J. Org. Chem. 56, 7350 (1991).

[33] Wang T. T., Huang T. C., Yeh M. Y., “Benzyl Ether from Phase Transfer Catalyzed Strongly Alkaline Hydrolysis of Benzyl Chloride”, J. Mol. Cat. 57, 271 (1990).

[34] Dehmlow E. V., and Schmidt J., Tetrahedron Lett., 95 (1976).

[35] 高志宏,「鹵化四丁基銨鹽之合成動力學、溶解、萃取及精製研究」,國立中央大學化工碩士論文(2000)

[36] 吳永南,「碘離子在液-液相轉移催化取代反應之助催化作用與溶劑對齊在兩相中之分佈之影響」,國立中央大學化工碩士論文(1993)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔