(3.234.221.67) 您好！臺灣時間：2021/04/11 15:51

### 詳目顯示:::

:

• 被引用:0
• 點閱:332
• 評分:
• 下載:41
• 書目收藏:0
 三角剪切模式(Trishear model)是用於解釋斷層與褶皺關係之運動學模式，在模式中影響褶皺形貌變化重要參數為斷層破裂距離和斷層滑移量之比值(P/S)。然而，三角剪切模式為運動學分析模式，因此P/S值之力學意義並不清楚。為了解P/S之力學意義，本研究以有限差分程式FLAC模擬斷層擴展褶皺(Fault-propagation fold)之地層變形過程，分析使用之彈性模式考慮斷層前緣初始深度、上覆地層彈性常數，而彈塑性模式考慮上覆地層與基盤間之摩擦性質對地層變形之影響。至於力學模型中P/S值乃利用位移-距離法(Displacement/Distance Method)加以計算，同時將變形反饋至三角剪切模式進行逆分析，以驗證位移-距離法於FLAC分析剖面之適用性。本研究採用位移-距離法獲得之結果充分反應累積剪應變增量之分佈，經將褶皺變形帶依變形特性分為三段後，本研究得以合理解釋並計算斷層擴展褶皺三角剪切模式中之P/S值。根據FLAC斷層擴展褶皺模擬及利用位移-距離法分析變形剖面之P/S值變化，結果顯示P/S值變化趨勢於斷層錯動過程中符合斷層成長模式(Fault-growth model)。除此之外，斷層前緣初始深度越深、上覆地層與基盤間之摩擦角越大則P/S值越大，其中尤以斷層前緣初始深度影響P/S值最為顯著，而上覆地層彈性常數對P/S值之影響則不明顯。
 Trishear model is a kinematic model. It is used to simulate the geometry of fault-related fold. The ratio of fault-propagation to slip (P/S) is one of the important parameters of Trishear model which effects geometry of fold. However, the mechanical significance of P/S of Trishear model is unclear. This study used finite difference analysis software “FLAC” to simulate fault-propagation fold. The influence of initial depth of fault tip, elastic modulus of cover material and basement-cover contact strength on the P/S is investigated. In mechanical model, the P/S of deformed section is evaluated using Displacement-Distance Method. Backward analysis using Trishear model confirm that Displacement-Distance Method is suitable for determining the P/S value of deformed section import from FLAC analysis. P/S can be evaluated and explained reasonable by divide folded zone into three areas according to the deformed characteristics. The relation between the determined P/S and different slip of deformed section can be explained by Fault-growth model. Furthermore, P/S increase with increasing depth of fault tip and resistance to slip along basement-cover contact. On the other hand, the influence of elastic modulus on P/S is unobvious.
 中文摘要 i英文摘要 ii誌 謝 iii目 錄 iv圖 目 錄 vii表 目 錄 xii第一章 緒論 11.1 研究動機與目的 11.2 研究方法 11.3 研究內容 4第二章 文獻回顧 62.1 斷層擴展褶皺之運動學分析 72.2 斷層擴展褶皺運動學分析之數值模擬 112.3 力學分析法 132.3.1 以連續體力學為基礎之斷層擴展褶皺數值分析 132.3.2 以離散體力學為基礎之斷層擴展褶皺數值分析 15第三章 研究方法與數值模型 183.1 FLAC程式之簡介及應用 183.1.1 FLAC程式概述 183.1.2 FLAC程式之運算程序 183.1.3 FLAC程式之理論架構 193.2 數值模型建立 223.3 位移-距離法(Displacement-Distance Method) 273.4 利用位移-距離法決定FLAC分析剖面之斷層前緣位置 28第四章 結果與討論 354.1 位移-距離法適用性之驗證 354.2 利用累積塑性剪應變法與位移-距離法定義斷層前緣 384.3 上覆地層與基盤間摩擦角對P/S值之影響 394.4 斷層前緣初始深度對P/S值之影響 424.5 上覆地層彈性常數對P/S值之影響 444.6 斷層滑移量與P/S值之關係 46第五章 結論與建議 495.1 結論 495.2 建議 50參考文獻 51附錄A 位移-距離法程式碼 53附錄B FLAC程式碼 模擬上覆地層與基盤間之摩擦性質 57附錄C FLAC程式碼 模擬斷層前緣初始深度(1公里) 62附錄D FLAC程式碼 模擬上覆地層彈性常數 66
 Allmendinger, R. W. (1998) Inverse and forward numerical modelong of trishear fault-propagation folds. Tectonics 17, 640-656.Cardozo, N., Allmendinger, R. W. and Morgan, J. K. (2005) Influence of mechanical stratigraphy and initial stresss state on the formation of two fault propagateion folds. Journal of Structural Geology 27, 1954-1972.Cardozo, N., Bhalla, K., Zehnder, A. T. and Allmendinger, R. W. (2003) Mechanical models of fault propagation folds and comparison to the trishear kinematic model. Journal of Structural Geology 25, 1-18.Chen, W. S., Lee, K. J., Ponti, D. J., Prentice, C., Chen, Y. G., Chang, H. C., and Lee, Y. H. (2004) Paleoseismology of the Chelungpu Fault during the past 1900 years. Quaternary International 115-116, 167-176.Chester, J. S. and Chester, F. M. (1990) Fault-propagation folds above thrusts with constant dip. Journal of Structural Geology 12, 903-910.Cristallini, E. O. and Allmendinger, R. W. (2002) Backlimb trishear: a kinematic model for curved folds developed over angular fault bends. Journal of Structural Geology 24, 289-295.Erslev, E. A. (1991) Trishear fault-propagation folding. Geology 19, 617-620.Finch, E., Hardy, S. and Gawthorpe, R. (2003) Discrete element modeling of contractional fault-propagation folding above rigid basement fault blocks. Journal of Structural Geology 25, 515-528.Gallup, W. B. (1951) Geology of Turner Valley oil and gas field,Alberta,Canada. Bull. Am. Ass. Petrol. Geol. 35, 797-821.Hardy, S. and Ford, M. (1997) Numerical modeling of trishear fault propagateion folding. Tectonics 16 841-854.Jamison, W. R. (1987) Geometric analysis of fold development in overthrust terrances. Journal of Structural Geology 9, 207-219.Johnson, K. M. and Johnson, A. M. (2002) Mechanical models of trishear-like folds. Journal of Structural Geology 24, 277-287.Kim, Y. S. and Sanderson, D. J. (2005) The relationship between displacement and length of faults:a review. Earth-Science Reviews 68, 317-334.Suppe, J. and Medwedeff, D. A. (1984) Fault-propagation folding. Geological Society of America Abstracts with Programs 16, 670.Suppe, J. (1985) Principles of structural geology, Prentice-Hall, Englewood Cliffs, New Jersey.Suppe, J. and Medwedeff, D. A. (1990) Geometry and kinematics of fault-propagation folding. Eclogae Geologicae Helvetiae 83, 409-454.Tavani, S., Storti, F. and Salvini, F. (2006) Double-edge fault-propagation folding:geometry and kinematics. Journal of Structural Geology 28, 19-35.Watterson, J. (1986) Fault dimensions, displacement and growth. Pure and Applied Geophsics 124, 365-373.Williams, G. and Chapman, T. (1983) Strains developed in the hangingwalls of thrust due to their slip/propagation rate: adislocation model. Journal of Structural Geology 5, 563-571.王景平 (2002) 地表單斜褶皺與盲斷層之幾何關係探討，國立台灣大學土木工程學研究所碩士論文。張正宜 (2000) 車籠埔斷層活動構造之數值模擬，國立中央大學應用地質研究所碩士論文。許恆誌 (2004) 盲逆衝斷層活動時上覆土層內破裂擴展行為與變形區範圍之研究，國立台灣大學土木工程學研究所碩士論文。
 電子全文
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 車籠埔斷層活動構造之數值模擬 2 地表單斜褶皺與盲斷層之幾何關係探討

 無相關期刊

 1 斷層泥力學行為對斷層滑移機制之研究 2 地震斷層作用後的流體滲透作用：檢視TCDPA井車籠埔斷層斷層岩的化學及礦物組成 3 地表單斜褶皺與盲斷層之幾何關係探討 4 出磺坑背斜構造發育之三角剪切模型 5 同震斷層滑移與應力轉移觸發斷層之穩定及失穩運動 6 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例 7 車籠埔斷層與梅山斷層之地電研究 8 地震斷層作用後的流體滲透作用：檢視車籠埔斷層南投井斷層岩之化學及礦物組成 9 嘉義盲斷層的構造與運動速度研究 10 鐵砧山現地應力場與斷層再活動分析 11 車籠埔斷層斷層泥岩芯之顆粒大小分析及破碎能量 12 應力歷史相關之沉積岩孔隙率模型 13 非線性破壞準則之臨界楔模型 14 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析 15 台灣西南平原末次冰期以來之地層及構造運動

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室