( 您好!臺灣時間:2019/07/18 03:15
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Sung-chi Chen
論文名稱(外文):Investigation of the effects of quartz nanostructures on surface contact angle and surface wettability
指導教授(外文):Ming-tsung Hung
外文關鍵詞:micro/nano-structurescontact anglequartzwettability
  • 被引用被引用:0
  • 點閱點閱:189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0

With the development of semiconductor technology, more materials are used in semiconductor manufacturing processes. Quartz has many special properties, such as piezoelectricity, insulation, and light transmission. It has been widely used in biomedical and MEMS components. In these components, in order to avoid the dust, particles and liquid effects on the operation or performance, the surface hydrophobicity, hysteresis, and self-cleaning properties may play important roles. In this study, we use chromium thin film as an etching mask on the Z-cut quartz wafers. Then, we use the wet etching process to make nanostructures on the quartz surface. Finally, we will discuss how the nanostructures affect surface contact angle and wettability.
In this paper, a nanometer thick non-continuous chromium layer is deposited on the quartz wafer as an etching mask. Ammonium bifluoride solution is used as the etchant to etch quartz to form nanoneedles on the quartz surface. The etched structures for different etching time are observed by scanning electron microscopy and compared with the models from literatures.
In the results, the distribution of structures is not uniform and there are many defects between structures due to the uneven growth of the thin film. The surface wettability switches from hydrophilic to hydrophobic. In the static contact angle measurement, we found that for high structure-density samples, the measured contact angles are close to the values predicted by the Cassie-Baxter model. However, with the reduction in the structure density, the contact angles are lower than that of the Cassie-Baxter model. The reason causes the phenomenon is the droplets penetration into the structures. In addition, the dynamic contact angle measurements show that the advancing contact angles of wafers are close to the static contact angle values, because there are lots of defects on the surface. However, due to the defects, the samples have lower receding angle, and thus the hysteresis on the surface is worse, causing that the droplet is hard to slide or roll on the surface. The quartz wafer prepared by the method of this study will have a high hydrophobicity, but serious surface hysteresis.

摘要 ..i
Abstract. ii
致謝.. iv
圖目錄.. viii
表目錄.. xiv
第一章 緒論1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 文獻回顧 5
1.3.1 石英晶體的非等向性蝕刻 5
1.3.2 表面改質與潤濕性探討. 7
1.4 論文架構. 12
第二章 理論基礎..13
2.1 石英晶格結構及特性.. 13
2.2 石英晶體之切向. 15
2.3 石英晶體之蝕刻技術.. 16
2.3.1 石英之濕式蝕刻.. 17
2.3.2 石英之乾式蝕刻.. 20
2.4 薄膜蒸鍍. 21
2.4.1 薄膜蒸鍍成長理論. 21
2.4.2 薄膜成長之形式.. 22
2.5 接觸角理論 24
2.5.1 楊氏方程式(Young’s equation).. 24
2.5.2 溫佐方程式(Wenzel equation) 25
2.5.3 卡西方程式(Cassie and Baxter equation). 27
2.5.4 卡西修正模型 28
2.6 遲滯效應. 30
2.6.1 動態接觸角(Dynamic contact angle).. 30
2.6.2 遲滯效應(Hysteresis effect) . 31
2.7 蓮花效應與花瓣效應.. 33
2.7.1 蓮花效應(Lotus effect) 33
2.7.2 花瓣效應(Petal effect). 34
第三章 研究方法..37
3.1 研究流程架構.. 37
3.2 實驗步驟. 39
3.2.1 晶圓清洗.. 40
3.2.2 蒸鍍金屬薄膜 40
3.2.3 蝕刻液之調配 41
3.2.4 試片之蝕刻. 41
3.3 量測與分析方法. 43
第四章 結果與討論.46
4.1 結構數據整理.. 46
4.2 數學模型分析.. 58
4.2.1 溫佐模型分析 58
4.2.2 卡西模型分析 62
4.2.3 卡西模型修正 63
4.3 靜態接觸角量測結果與分析.. 67
4.3.1 接觸面積25%以上之試片接觸角. 68
4.3.2 接觸面積25%以下試片之接觸角. 70
4.3.3 接觸面積10%以下之試片接觸角. 72
4.3.4 靜態接觸角整理與模型分析比較. 73
4.4 動態接觸角量測結果與分析.. 81
4.4.1 微量液滴法量測結果 81
4.4.2 旋轉平台法量測結果 90
第五章 結論與未來展望102
5.1 結論. 102
5.2 未來展望.. 103
[1] H. Chang,"石英元件技術系列(1)石英元件的過去、現在與未來",台灣區電機電子工業同業公會電子報,Vol. 93,2009。
[2] J. Curie and P. Curie, "Development by pressure of polar electricity in hemihedral crystals with inclined faces",Bull. Soc. Min. de France, Vol. 3, pp. 903, 1880.
[3] S. Fhjishima, "The History of Ceramic Filters",IEEE Transactions on ultrasonics, ferroelectrics, and frequency control, Vol.47, pp. 1-7, 2000.
[4] H. Nakanishi, T. Nishimoto, A. Arai, H. Abe, M. Kanai, Y. Fujiyama, T. Yoshida, "Fabrication of quartz microchips with optical slit and development of a linear imaging UV detector for microchip electrophoresis systems",Electrophoresis, Vol. 22, pp. 230-234, 2001.
[5] T.R. Hsu, "MEMS and Microsystems: Design and Manufacture",McGraw-Hill Science, 2001.
[6] W.C. Sung, G.B. Lee, P.C. Liao, S.H. Chen, "Electrophoretic Microchips",Chemistry (The Chinese Chem. SOC., Taipei), Vol. 59, No. 3, pp. 423~428, 2001.
[7] C. Lu, A.W. Czanderna, "Application of Piezoelectric Quartz Crystal Microbalance", Elsevier, 1984.
[8] WR. Johnson, R. Dettre, "Contact Angle Hysteresis: contact angle measurement on rough surfaces",Advances in Chemistry Series, NO. 43, pp. 112-144, 1963.
[9] W. Barthlott and C. Neinhuis, "Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces",Planta, Vol. 202, pp. 1-8, 1997.
[10] H. Oh, G. Kim, H. Seo, Y. Song, K. Lee, S.S. Yang, "Fabrication of micro-lens array using quartz wet etching and polymer",Sensors and Actuators A: Physical, Vol. 164, pp. 161-167, 2010.
[11] A. Tuantranont, V.M. Bright, J. Zhang, W. Zhang, J.A. Neff, Y.C. Lee, "Optical beam steering using MEMS-controllable microlens array",Sensors and Actuators A: Physical, Vol. 91, pp. 363-372, 2001.
[12] J.M. Lee, D. Lee, Y. Baek, "Fabrication of dual-focus dual-layered microlens",Optics Communications, Vol. 289, pp. 69-74, 2013.
[13] C. Tellier, "Orientation effects in chemical etching of quartz plates",Journal of materials Science, Vol. 18, pp. 3621-3632, 1983.
[14] S.W. Chang , V.P. Chuang, S.T. Boles, C.A. Ross, C.V. Thompson, "Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching",Advanced Functional Materials, Vol. 19, pp. 2495-2500, 2009.
[15] P. Suda, A.E. Zumsteg, W. Zingg, "Anisotropy of etching rate for quartz in ammonium bifluoride",in Proc. IEEE Int. Freq. Contr. Symp, pp. 359–363, 1979.
[16] C. Hedlund, U. Lindberg, U. Bucht, J. Söderkvist, "Anisotropic etching of Z-cut quartz",Journal of Micromechanics and Microengineering, Vol. 3, pp. 65-73, 1993.
[17] P. Rangsten, C. Hedlund, I. Katardjiev, Y. Bäcklund, "Etch rates of crystallographic planes in Z-cut quartz:experiments and simulation",Journal of Micromechanics and Microengineering, Vol. 8, pp. 1-6, 1998.
[18] D. Oner, T. J. McCarthy, "Ultrahydrophobic Surfaces. Effects of topography length scales on wettability",Langmuir, Vol. 16, pp. 7777-7782, 2000.
[19] Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto, "Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets ",Langmuir, Vol. 18, pp. 5818-5822, 2002.
[20] 陳佳惠,"斥水性奈微結構表面之液珠驅動與操控",國立清華大學,碩士論文,民國93年。
[21] T. Soeno, K. Inokuchi, S. Shiratori, "Ultra-water-repellent surface: fabrication of complicated structure of SiO_2 nanoparticles by electrostatic self-assembled films",Applied Surface Science, Vol. 237, pp. 543-547, 2004.
[22] N. Gao, Y.Y. Yan, X.Y. Chen, X.F. Zheng, "Superhydrophobic Composite Films Based on THS and Nanoparticles",Journal of Bionic Engineering, Vol. 7, pp. 59-66, 2010.
[23] T.J. Ko, E.K. Her, B. Shin, "Water condensation behavior on the surface of a network of superhydrophobic carbon fibers with high-aspect-ratio nanostructures",Journal of Carbon, Vol. 50, pp. 5085-5092, 2012.
[24] J.S. Danel, G. Delapierre, "Quartz: a material for microdevices",Journal of Micromechanics and Microengineering, Vol. 1, pp. 187-198, 1991.
[25] G.Z. Sauerbrey, "Use of quartz oscillators for weighing thin layers and for Microweighing",Journal of Physics, Vol.155, pp. 206–222, 1959.
[26] John R. Vig, "Tutorial on quartz crystal resonators and oscillators",2001.
[27] S. Lee, "Photolithography and Selective Etching of an Array of Surface Mount Device 32.768 kHz Quartz Tuning Fork Resonators: Definition of Side-Wall Electrodes and Interconnections Using Stencil Mask",The Japan Society of Applied Physics, Vol. 40, pp. 5480-5484, 2001.
[28] G. Delapierre, "Micromachining: A Survey of the Most Commonly Used Processes," Sens. Actuators, vol. 17, pp. 123–138, 1989.
[29] S.H. Li, "Technology of Integrated circuit process ",Wu-Nan Book Inc, 2003。
[30] J.Z. Lo, "Technology and Application of Thin Film",Chuan-Hwa Book Co., 2005。
[31] "微機電系統技術與應用",國家實驗研究院儀器科技研究中心,2003。
[32] S.H. Jones, D.K. Walker, "Highly Anisotropic Wet Chemical Etching of GaAs Using NH_4 OH:H_2 O_2:H_2 O",Journal of the Electrochemical Society, Vol. 137, pp. 1653-1654, 1990.
[33] J. Wang, H. Niino, A. Yabe, "Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching",Applied Physics A, Vol. 69, pp. 271-273, 1999.
[34] H. Kikyuama, N. Miki, K. Saka, J. Takano, I. Kawanabe, M. Miyashita, T. Ohmi, "Principles of Wet Chemical-Processing in Ulsi Microfabrication",IEEE Transactions on Semiconductor Manufacturing, Vol. 4, pp. 26-35, 1991.
[35] J.S. Judge, "A Study of the Dissolution of Si02 in Acidic Fluoride Solutions",Journal of Electrochemical Society, Vol. 118, pp. 1772-1775, 1971.
[36] J.K. Vondeling, "Fluoride-based etchants for quartz",Journal of Materials Science, Vol. 18, pp. 304-314, 1983.
[37] R.W. Ward, "Update on semiconductor process techniques for crystals", Proc. 4th Quartz Crystal Conference, pp. 276–287, 1982.
[38] B Spangenberga, K. Popova, V Orlinov, "Reactive ion etching of crystalline quartz for SAW devices" Vacuum, Vol. 39, pp. 453-461 1989.
[39] G. Dahm, I.W. Rangelow, P. Hudek, H.W.P. Koops, "Quartz etching for phase shifting masks",Microelectronic Engineering, Vol. 27, pp. 263-266, 1995
[40] Y. Morikawa, T. Koidesawa, T. Hayashi, K. Suu, "A novel deep etching technology for Si and quartz materials",Thin Solid Films, Vol. 515, pp. 4918–4922, 2007.
[41] J.W. Shiraki, C.S. Yoshida, "Thin Film Engineering",Chuan-Hwa Book Co., 2006。
[42] G.Z. Cao, "Nanostructures and nanomaterials synthesis",Properties and Applications: Properties&Applications. chp.5, 2004。
[43] T. Young, "An Essay on the Cohesion of Fluids",Philosophical Transactions of the Royal Society, Vol. 95, pp. 65-87, 1805.
[44] Wenzel, "Resistance of Solid Surfaces to Wetting by Water",Industrial and Engineering Chemistry, Vol. 28, pp. 988-994, 1936.
[45] H. P. Jennissen, " Hyperhydrophilic rough surfaces and imaginary contact angles",Materialwissenschaft und werkstofftechnik, Vol. 43, pp. 743-750, 2012.
[46] Y.Q. Zu, Y.Y. Yan, J.Q. Li, Z.W. Han, "Wetting Behaviors of a Single Droplet on Biomimetic",Journal of Bionic Engineering, Vol. 7, pp. 191-198, 2010.
[47] A.B.D. Cassie, S. Baxter, "Wettability of Porous Surfaces",Transactions of the Faraday Society, Vol. 40, pp. 546-551, 1944.
[48] A.J.B. Milne, A. Amirfazli, "The Cassie equation:How it is meant to be used",Colloid and Interface Science , Vol. 170, pp.48-55, 2012.
[49] L. Gao, T.J. McCarthy, " Contact Angle Hysteresis Explained",Langmuir, Vol. 22, pp. 6234-6237, 2006.
[50] Y.Y. Yan, N. Gao, W. Barthlott, " Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces",Colloid and Interface Science, Vol. 169, pp. 80-105, 2011.
[51] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, "Petal Effect: A Superhydrophobic State with High Adhesive Force",Langmuir, Vol. 24, pp. 4114-4119, 2008.
[52] 李正中,"薄膜光學與鍍膜技術",藝軒圖書出版社, 2006。
[53] B. Lautrup, "Physics of Continuous Matter", Taylor & Francis Group, USA, 2011.
[54] Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto, "Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets",Langmuir, Vol. 18, pp. 5818-5822, 2002.
[55] J.F. Joanny, P.G. de Gennes, "A model for contact angle hysteresis",Journal of Chemical Physics, Vol. 81, pp. 552, 1984.
[56] 曾祥慶,"超疏水表面利用壓板法量測接觸角的遲滯現象與超疏水表面因缺陷存在造成水珠停滯不前的現象",國立中央大學,碩士論文,民國100年。

註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔