(3.235.11.178) 您好!臺灣時間:2021/02/26 04:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳新龍
研究生(外文):Sin-Long Chen
論文名稱:石英奈米針狀結構表面之潤濕性及遲滯性研究
指導教授:洪銘聰洪銘聰引用關係
指導教授(外文):Ming-Tsung Hung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:中文
論文頁數:130
中文關鍵詞:石英接觸角奈米結構潤濕性
外文關鍵詞:quartzcontact anglenanostructurewettability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:65
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
石英具有良好的熱穩定性、透光性、絕緣性及壓電特性廣泛應用於機械結構、光學元件及震盪元件。隨著微機電技術的進步,石英也開始應用於微機電系統元件上,在這些應用中其表面特性經常為重要考量的因素,表面潤濕性為化學檢測微系統及生醫晶片中重要的參數,於表面製作微奈米結構則為表面改質的有效方法。
本研究使用熱退火製備之白金奈米點作為遮罩,並利用氟化氫銨水溶液對石英晶圓進行濕式蝕刻得到奈米針狀結構,藉由掃描式電子顯微鏡觀察針狀結構形狀,再量測表面接觸角分析其與表面結構關係,並與理論模型進行探討。研究結果隨膜厚增加,奈米點粒徑隨之上升,而分佈密度下降。白金奈米點雖附著性較差但仍可阻擋蝕刻液,利用不同粒徑與分佈之奈米點,配合不同蝕刻時間即可在石英表面蝕刻出不同高度與分佈密度之結構。在靜態接觸角方面,量測結果與模型比對後發現液滴在此結構下會滲入至結構間並接觸到結構間底部,使接觸角下降。分析參數後得知接觸結構間底部面積比例隨分佈密度增加等比例下降;結構高度則影響下降的幅度,結構高度越高則下降幅度越大。在動態接觸角方面,具有結構之表面呈現相當大的遲滯現象,其原因可由液滴在表面的狀態作解釋,在此針狀結構表面液滴會滲入結構之中,使其不易於表面上移動。遲滯角隨表面粗糙度增加而變大,因其滲入結構的程度與表面粗糙度有關,當表面粗糙度上升時,液滴仍為部分接觸結構間底部的狀態,代表滲入的狀況更為嚴重而使遲滯角更大。

Quartz has been widely used in mechanical structures, optic components and oscillators because of its superb properties in thermal stability, light transmission, insulation, and piezoelectricity. With the development of MEMS technology, quartz also becomes an important MEMS material. The surface wettability plays an important role in chemical detecting microsystems and biomedical components. One of the effective ways to modify the surface wettability is by introducing micro/nanostructures on the surface. In this study, we use thermal annealing process to make the platinum nano-dots and use it as the etching mask. Then, we use ammonium bifluoride solution to etch the quartz wafer and obtain the nanoneedle structures on the surface. The surface morphology is observed by SEM. Then, we measure the static and dynamic contact angles and compared with theoretical models.
In the results, as the thickness of the platinum film increases, the diameter of nano-dots increases and the density of nano-dots decreases. The nano-dots can withstand the etchant although it has poor adhesion. By using different size and density nano-dots with different time, various height and density nanostructures are obtained. In the contact angle measurements, it suggests that the droplet penetrates into the structures and partially contacts the bottoms of them. Compared with the theoretical models, we find that the ratio of the bottom contacting area decreases with the increase of the structure density. And the decreasing level increases with the increase of the structure height. The dynamic contact angle measurements show that the structure has great impact on the hysteresis behavior. This situation can be explained by the droplet penetration into the structures, which impede the move of the droplet. The hysteresis increases with the increase of surface roughness. The situation becomes severe when the droplets partially touch the bottom surface

摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xiv
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 文獻回顧 5
1.3.1 石英晶體之非等向性蝕刻 5
1.3.2 熱退火製備奈米點 6
1.3.3 表面改質與潤濕性研究 8
1.4 論文架構 11
第二章 理論基礎 12
2.1 石英晶體結構與特性 12
2.2 石英晶體的切向 13
2.3 石英晶體蝕刻技術 14
2.4 奈米點形成機制 17
2.5 接觸角理論 19
2.5.1 楊氏方程式(Young’s equation) 19
2.5.2 溫佐模型 (Wenzel model) 20
2.5.3 卡西模型 (Cassie and Baxter model) 21
2.5.4 混和模型(Combined model) 22
2.6 動態接觸角 24
第三章 研究方法 29
3.1 研究流程架構 29
3.2 實驗步驟 30
3.2.1 晶圓清洗 31
3.2.2 奈米點製備 31
3.2.3 石英蝕刻 32
3.2.4 試片表面改質 34
3.2.5 接觸角量測 38
第四章 結果與討論 41
4.1 奈米點遮罩結果整理 41
4.1.1 不同熱退火溫度製程 41
4.1.2 不同白金薄膜厚度 46
4.2 石英結構探討與分析 53
4.2.1 遮罩為白金膜厚3 nm製備之奈米點 53
4.2.2 遮罩為白金膜厚4 nm製備之奈米點 55
4.2.3 遮罩為白金膜厚5 nm製備之奈米點 59
4.2.4 遮罩為白金膜厚8 nm製備之奈米點 63
4.2.5 遮罩為白金膜厚10 nm製備之奈米點 67
4.2.6 遮罩為白金膜厚12 nm製備之奈米點 71
4.3 靜態接觸角量測結果與分析 76
4.3.1 量測結果及模型比較 77
4.3.2 模型之參數分析與結果探討 89
4.4 動態接觸角量測結果與分析 97
第五章 結論與未來展望 106
5.1 結論 106
5.2 未來展望 107
參考文獻 108

[1] H. Chang,"石英元件技術系列(1)石英元件的過去、現在與未來",台灣區電機電子工業同業公會電子報,Vol. 93,2009。
[2] J. Curie and P. Curie, "Development by pressure of polar electricity in hemihedral crystals with inclined faces", Bull. Soc. Min. de France, Vol. 3, pp. 903, 1880.
[3] Takumi Mori, Shigenori Moriwaki, and Norikatsu Mio, "Mechanical Q-factor Measurement of a Quartz Oscillator at Cryogenic Temperature", Applied Physics Express 1, pp.077002-1-3, 2008.
[4] T.R. Hsu, "MEMS and Microsystems: Design and Manufacture", McGraw-Hill Science, 2001.
[5] W.C. Sung, G.B. Lee, P.C. Liao, S.H. Chen, "Electrophoretic Microchips",Chemistry (The Chinese Chem. SOC., Taipei), Vol. 59, No. 3, pp. 423-428, 2001.
[6] W. Barthlott and C. Neinhuis, "Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces", Planta, Vol. 202, pp. 1-8, 1997.
[7] Desmond D. Stubbs, Sang-Hun Lee, and William D. Hunt, "Vapor Phase Detection of a Narcotic Using Surface Acoustic Wave Immunoassay Sensors", Ieee Sensors Journal, vol. 5, pp. 335-339, 2005.
[8] P. Patel, C. K. Choi, and D. D. Meng, "Superhydrophilic Surfaces for Antifogging and Antifouling Microfluidic Devices," Journal of the Association for Laboratory Automation, vol. 15, pp. 114-119, 2010.
[9] P. Suda, A.E. Zumsteg, W. Zingg, "Anisotropy of etching rate for quartz in ammonium bifluoride", in Proc. IEEE Int. Freq. Contr. Symp, pp. 359-363, 1979.
[10] C. Hedlund, U. Lindberg, U. Bucht, J. Söderkvist, "Anisotropic etching of Z-cut quartz", Journal of Micromechanics and Microengineering, Vol. 3, pp. 65-73, 1993.
[11] S. Strobel, C. Kirkendall, J. Chang, K. K. Berggren "Sub-10-nm structures on silicon by thermal dewetting of platinum", Nanotechnology, 21, 505301, 2010
[12] Yoshino, M., Osawa, H., & Yamanaka, A. Effects of process conditions on nano-dot array formation by thermal dewetting. 14 (4), 478-486, 2012.
[13] R. Kaliasas, J. Baltrusaitis, M. Mikolajūnas, L. Jakučionis, D. Viržonis, "Scaling down lateral dimensions of silicon nanopillars fabricated by reactive ion etching with Au/Cr self-assembled clusters as an etch mask"Thin Solid Films, 520, p. 2041, 2012.
[14] D. Oner, T. J. McCarthy, "Ultrahydrophobic Surfaces. Effects of topography length scales on wettability", Langmuir, Vol. 16, pp. 7777-7782, 2000.
[15] Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto, "Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets ",Langmuir, Vol. 18, pp. 5818-5822, 2002.
[16] S. H. Kim, J. H. Kim, B. K. Kang and H. S. Uhm, "Superhydrophobic CFx Coating via In-Line Atmospheric RF Plasma of He-CF4-H2", Langmuir, 21(26), 12213-12217, 2005.
[17] J.S. Danel, G. Delapierre, "Quartz: a material for microdevices",Journal of Micromechanics and Microengineering, Vol. 1, pp. 187-198, 1991.
[18] G.Z. Sauerbrey, "Use of quartz oscillators for weighing thin layers and for Microweighing", Journal of Physics, Vol.155, pp. 206-222, 1959.
[19] John R. Vig, "Tutorial on quartz crystal resonators and oscillators", 2001.
[20] J.Z. Lo, "Technology and Application of Thin Film",Chuan-Hwa Book Co., 2005.
[21] S. Wolf, R.N. Tauber, "Silicon Processing for the VLSI Era", Process Technology, Vol. 1, pp. 532-533, 1986.
[22] "微機電系統技術與應用",國家實驗研究院儀器科技研究中心,2003.
[23] J. Wang, H. Niino, A. Yabe, "Micromachining of quartz crystal with excimer lasers by laser-induced backside wet etching", Applied Physics A, Vol. 69, pp. 271, 1999.
[24] H. Kikyuama, N. Miki, K. Saka, J. Takano, I. Kawanabe, M. Miyashita, T. Ohmi, "Principles of Wet Chemical-Processing in Ulsi Microfabrication", IEEE Transactions on Semiconductor Manufacturing, Vol. 4, pp. 26-35, 1991.
[25] J.S. Judge, "A Study of the Dissolution of Si02 in Acidic Fluoride Solutions",Journal of Electrochemical Society, Vol. 118, pp. 1772-1775, 1971.
[26] J.K. Vondeling, "Fluoride-based etchants for quartz", Journal of Materials Science, Vol. 18, pp. 304-314, 1983.-273, 1999.
[27] R.W. Ward, "Update on semiconductor process techniques for crystals", Proc. 4th Quartz Crystal Conference, pp. 276-287, 1982.
[28] C. H. Pelle Rangsteny, Ilia V Katardjiev and Ylva Bäcklund . "Etch rates of crystallographic planes in Z -cut quartz—experiments and simulation", Journal of Micromechanics and Microengineering, vol. 8, pp. 1-6, 1998.
[29] Jiran E, Thompson CV. "Capillary instabilities in thin films", Journal of Electronic Materials, 19(11):1153-60, 1990.
[30] T. Young, "An Essay on the Cohesion of Fluids", Philosophical Transactions of the Royal Society, Vol. 95, pp. 65-87, 1805.
[31] Wenzel, "Resistance of Solid Surfaces to Wetting by Water", Industrial and Engineering Chemistry, Vol. 28, pp. 988-994, 1936.
[32] A.B.D. Cassie, S. Baxter, "Wettability of Porous Surfaces", Transactions of the Faraday Society, Vol. 40, pp. 546-551, 1944.
[33] T. Young, "An Essay on the Cohesion of Fluids", Philosophical Transactions of the Royal Society, Vol. 95, pp. 65-87, 1805.
[34] X.B. Zhou and J.Th.M. De Hosson, “Influence of surface roughness on the wetting angle”, J. Mater. Res. Vol. 10, 1995.
[35] L. Feng, Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, L. Jiang, "Petal Effect: A Superhydrophobic State with High Adhesive Force", Langmuir, Vol. 24, pp. 4114-4119, 2008.
[36] L. Gao, T.J. McCarthy, " Contact Angle Hysteresis Explained", Langmuir, Vol. 22, pp. 6234-6237, 2006.
[37] Y.Y. Yan, N. Gao, W. Barthlott, " Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces", Colloid and Interface Science, Vol. 169, pp. 80-105, 2011.
[38] 龍文安,"積體電路微影製程"高立出版社,1998。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔