|
1. Cole, N., et al., In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Investigative ophthalmology & visual science , 2010. 51(1): p. 390-395. 2. Donlan, R.M.J.C.I.D., Biofilm formation: a clinically relevant microbiological process. Clinical Infectious Diseases, 2001. 33(8): p. 1387-1392. 3. Vasilev, K., J. Cook, and H.J.J.E.r.o.m.d. Griesser, Antibacterial surfaces for biomedical devices. Expert review of medical devices , 2009. 6(5): p. 553-567. 4. Pavithra, D. and M.J.B.M. Doble, Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomedical Materials , 2008. 3(3): p. 034003. 5. Luna-Moreno, D., et al., Early detection of the fungal banana black sigatoka pathogen Pseudocercospora fijiensis by an SPR immunosensor method. Sensors , 2019. 19(3): p. 465. 6. Dutra, R.F., et al., Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer. Journal of pharmaceutical and biomedical analysis, 2007. 43(5): p. 1744-1750. 7. Gutiérrez-Sanz, Ó., et al., Transistor-based immunosensing in human serum samples without on-site calibration. Sensors and Actuators B: Chemical , 2019. 295: p. 153-158. 8. Yang, C., et al., Bactericidal functionalization of wrinkle-free fabrics via covalently bonding TiO 2@ Ag nanoconjugates. Journal of materials science , 2009. 44(7): p. 1894-1901. 9. Bozja, J., et al., Porphyrin‐based, light‐activated antimicrobial materials. Journal of Polymer Science Part A: Polymer Chemistry , 2003. 41(15): p. 2297-2303. 10. Almeida, E., T.C. Diamantino, and O.J.P.i.O.C. de Sousa, Marine paints: the particular case of antifouling paints. Progress in Organic Coatings , 2007. 59(1): p. 2-20. 11. Flemming, H.-C.J.A.m. and biotechnology, Biofouling in water systems–cases, causes and countermeasures. Applied microbiology and biotechnology, 2002. 59(6): p. 629-640. 12. Callow, J.A. and M.E.J.N.c. Callow, Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature communications , 2011. 2(1): p. 1-10. 13. Jain, A. and N.B.J.B. Bhosle, Biochemical composition of the marine conditioning film: implications for bacterial adhesion. Biofouling ,2009. 25(1): p. 13-19. 14. Lichtenberg, J.Y., Y. Ling, and S.J.S. Kim, Non-Specific Adsorption Reduction Methods in Biosensing. Sensors, 2019. 19(11): p. 2488. 15. Vaisocherová, H., et al., Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Analytical and bioanalytical chemistry , 2015. 407(14): p. 3927-3953. 16. Blawas, A. and W.J.B. Reichert, Protein patterning. Biomaterials ,1998. 19(7-9): p. 595-609. 17. Pan, S., et al., Biofouling removal and protein detection using a hypersonic resonator. ACS sensors , 2017. 2(8): p. 1175-1183. 18. Zhang, H., M.J.J.o.m. Chiao, and b. engineering, Anti-fouling coatings of poly (dimethylsiloxane) devices for biological and biomedical applications. Journal of medical and biological engineering, 2015. 35(2): p. 143-155. 19. Riquelme, M.V., et al., Optimizing blocking of nonspecific bacterial attachment to impedimetric biosensors. Sensing and bio-sensing research, 2016. 8: p. 47-54. 20. Steinitz, M.J.A.b., Quantitation of the blocking effect of tween 20 and bovine serum albumin in ELISA microwells. Analytical biochemistry , 2000. 282(2): p. 232-238. 21. Sheikh, S., et al., Sacrificial BSA to block non‐specific adsorption on organosilane adlayers in ultra‐high frequency acoustic wave sensing. Surface and interface analysis , 2013. 45(11-12): p. 1781-1784. 22. Tacha, D.E. and L.J.J.o.H. McKinney, Casein reduces nonspecific background staining in immunolabeling techniques. Journal of Histotechnology , 1992. 15(2): p. 127-132. 23. Schlenoff, J.B.J.L., Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir , 2014. 30(32): p. 9625-9636. 24. Jeyachandran, Y., et al., Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. Journal of colloid and interface science, 2010. 341(1): p. 136-142. 25. Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir , 2001. 17(9): p. 2841-2850. 26. Zheng, J., et al., Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: a molecular simulation study. Biophysical journal, 2005. 89(1): p. 158-166. 27. Herrwerth, S., et al., Factors that determine the protein resistance of oligoether self-assembled monolayers− internal hydrophilicity, terminal hydrophilicity, and lateral packing density. Journal of the American Chemical Society ,2003. 125(31): p. 9359-9366. 28. Chen, S., et al., Controlled chemical and structural properties of mixed self-assembled monolayers of alkanethiols on Au (111). Langmuir , 2000. 16(24): p. 9287-9293. 29. Al-Ani, A., et al., Tuning the density of poly (ethylene glycol) chains to control mammalian cell and bacterial attachment. Polymers, 2017. 9(8): p. 343. 30. Mehne, J., et al., Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Analytical and bioanalytical chemistry , 2008. 391(5): p. 1783-1791. 31. Lokanathan, A.R., et al., Mixed poly (ethylene glycol) and oligo (ethylene glycol) layers on gold as nonfouling surfaces created by backfilling. Biointerphases , 2011. 6(4): p. 180-188. 32. Li, L., S. Chen, and S.J.J.o.B.S. Jiang, Polymer Edition, Protein interactions with oligo (ethylene glycol)(OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Journal of Biomaterials Science,2007. 18(11): p. 1415-1427. 33. Cao, C., et al., A strategy for sensitivity and specificity enhancements in prostate specific antigen-α1-antichymotrypsin detection based on surface plasmon resonance. Biosensors and Bioelectronics , 2006. 21(11): p. 2106-2113. 34. Zhao, C., et al., Effect of film thickness on the antifouling performance of poly (hydroxy-functional methacrylates) grafted surfaces. Langmuir , 2011. 27(8): p. 4906-4913. 35. Liu, X., et al., Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS applied materials & interfaces , 2014. 6(15): p. 13034-13042. 36. Chang, Y., et al., A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir ,2008. 24(10): p. 5453-5458. 37. Zhang, Z., et al., Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p. 4285-4291. 38. Cheng, G., et al., A switchable biocompatible polymer surface with self‐sterilizing and nonfouling capabilities. Angewandte Chemie , 2008. 47(46): p. 8831-8834. 39. Zhang, Z., S. Chen, and S.J.B. Jiang, Dual-functional biomimetic materials: nonfouling poly (carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315. 40. Liu, K.-J. and J.L.J.M. Parsons, Solvent effects on the preferred conformation of poly (ethylene glycols). Macromolecules , 1969. 2(5): p. 529-533. 41. Abuchowski, A., et al., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry ,1977. 252(11): p. 3578-3581. 42. Morra, M.J.J.o.B.S., Polymer Edition, On the molecular basis of fouling resistance. Polymer Edition, 2000. 11(6): p. 547-569. 43. Halperin, A.J.L., Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir, 1999. 15(7): p. 2525-2533. 44. Pasche, S., et al., Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. The Journal of Physical Chemistry B, 2005. 109(37): p. 17545-17552. 45. Unsworth, L.D., H. Sheardown, and J.L.J.L. Brash, Protein resistance of surfaces prepared by sorption of end-thiolated poly (ethylene glycol) to gold: effect of surface chain density. Langmuir , 2005. 21(3): p. 1036-1041. 46. Li, L., et al., Protein adsorption on oligo (ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. The Journal of Physical Chemistry B, 2005. 109(7): p. 2934-2941. 47. Prime, K.L. and G.M.J.J.o.t.A.C.S. Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers. Journal of the American Chemical Society ,1993. 115(23): p. 10714-10721. 48. Zheng, J., et al., Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir ,2004. 20(20): p. 8931-8938. 49. Kitano, H., et al., Structure of water incorporated in sulfobetaine polymer films as studied by ATR‐FTIR. Macromolecular bioscience ,2005. 5(4): p. 314-321. 50. Clark Jr, L.C. and C.J.A.o.t.N.Y.A.o.s. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences ,1962. 102(1): p. 29-45. 51. Rogers, K.J.A.C.A., Recent advances in biosensor techniques for environmental monitoring. Analytica Chimica Acta , 2006. 568(1-2): p. 222-231. 52. Wood, R.W.J.P.o.t.P.S.o.L., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science , 1902. 18(1): p. 269. 53. Fano, U.J.J., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA ,1941. 31(3): p. 213-222. 54. Ladd, J., et al., Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids and Surfaces B: Biointerfaces , 2009. 70(1): p. 1-6. 55. Liu, J.T., et al., Surface plasmon resonance biosensor with high anti-fouling ability for the detection of cardiac marker troponin T. Analytica chimica acta,2011. 703(1): p. 80-86. 56. Ostatná, V., et al., Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance. Analytical and bioanalytical chemistry , 2008. 391(5): p. 1861-1869. 57. Touahir, L., et al., Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization. Biosensors and Bioelectronics , 2010. 25(12): p. 2579-2585. 58. Cennamo, N., et al., D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Scientific reports , 2019. 9(1): p. 1-9. 59. Silin, V., et al., SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs). Journal of colloid and interface science , 1997. 185(1): p. 94-103. 60. Karlsson, R., A. Michaelsson, and L.J.J.o.i.m. Mattsson, Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. Journal of immunological methods , 1991. 145(1-2): p. 229-240. 61. Ritchie, R.H.J.P.r., Plasma losses by fast electrons in thin films. Physical review,1957. 106(5): p. 874. 62. Fu, E., et al., Characterization of a wavelength-tunable surface plasmon resonance microscope. Review of scientific instruments, 2004. 75(7): p. 2300-2304. 63. Campbell, C.T. and G.J.B. Kim, SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials , 2007. 28(15): p. 2380-2392. 64. Piliarik, M., J.J.S. Homola, and A.B. Chemical, Self-referencing SPR imaging for most demanding high-throughput screening applications. Sensors and Actuators B: Chemical , 2008. 134(2): p. 353-355. 65. Piliarik, M., et al., Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensors and Actuators B: Chemical ,2007. 121(1): p. 187-193. 66. Tsai, C.-C., et al., Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology ,2011: p. 135503. 67. Chen, K.-I., B.-R. Li, and Y.-T.J.N.t. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano today , 2011. 6(2): p. 131-154. 68. Cui, Y., et al., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. science, 2001. 293(5533): p. 1289-1292. 69. Li, Z., et al., Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Letters, 2004. 4(2): p. 245-247. 70. Kind, M. and C.J.P.i.S.S. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science , 2009. 84(7-8): p. 230-278. 71. Sagiv, J.J.J.o.t.A.C.S., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society ,1980. 102(1): p. 92-98. 72. Capecchi, G., et al., Adsorption of CH 3 COOH on TiO 2: IR and theoretical investigations. Research on Chemical Intermediates , 2007. 33(3-5): p. 269-284. 73. Ulman, A.J.C.r., Formation and structure of self-assembled monolayers. Chemical reviews ,1996. 96(4): p. 1533-1554. 74. Foster, A.S. and R.M.J.T.J.o.c.p. Nieminen, Adsorption of acetic and trifluoroacetic acid on the TiO 2 (110) surface. The Journal of chemical physics , 2004. 121(18): p. 9039-9042. 75. Wang, G.M., W.C. Sandberg, and S.D.J.N. Kenny, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819. 76. Soreta, T.R., Electrochemically deposited metal nanostructures for application in genosensors. 2009: Universitat Rovira i Virgili. 77. Niemeyer, C.M.J.A.C.I.E., Semisynthetic DNA–protein conjugates for biosensing and nanofabrication. Angewandte Chemie International Edition, 2010. 49(7): p. 1200-1216. 78. Rusmini, F., Z. Zhong, and J.J.B. Feijen, Protein immobilization strategies for protein biochips. Sensors and Actuators B: Chemical , 2007. 8(6): p. 1775-1789. 79. Yu, Q., et al., Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B: Chemical , 2005. 107(1): p. 193-201. 80. Cohen-Atiya, M. and D.J.J.o.E.C. Mandler, Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements. Journal of Electroanalytical Chemistry , 2003. 550: p. 267-276. 81. Carrascosa, L.G., et al., Understanding the role of thiol and disulfide self-assembled DNA receptor monolayers for biosensing applications. European Biophysics Journal , 2010. 39(10): p. 1433-1444. 82. Schreiber, F.J.P.i.s.s., Structure and growth of self-assembling monolayers. Progress in surface science , 2000. 65(5-8): p. 151-257. 83. Li, L., S. Chen, and S.J.L. Jiang, Protein adsorption on alkanethiolate self-assembled monolayers: nanoscale surface structural and chemical effects. Langmuir , 2003. 19(7): p. 2974-2982. 84. Bain, C.D., et al., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989. 111(1): p. 321-335. 85. Wang, H., et al., Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir, 2005. 21(7): p. 2633-2636. 86. Luz, J.G., et al., Development and evaluation of a SPR-based immunosensor for detection of anti-Trypanosoma cruzi antibodies in human serum. Sensors and Actuators B: Chemical , 2015. 212: p. 287-296. 87. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293. 88. Piliarik, M., et al., Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosensors and Bioelectronics, 2010. 26(4): p. 1656-1661. 89. Hayashi, T., et al., Mechanism underlying bioinertness of self-assembled monolayers of oligo (ethyleneglycol)-terminated alkanethiols on gold: protein adsorption, platelet adhesion, and surface forces. Physical Chemistry Chemical Physics, 2012. 14(29): p. 10196-10206. 90. Ladd, J., et al., Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids and Surfaces B: Biointerfaces ,2009: p. 1-6. 91. Bian, S., et al., Development and validation of an optical biosensor for rapid monitoring of adalimumab in serum of patients with Crohn's disease. Drug testing and analysis ,2018. 10(3): p. 592-596. 92. Unsworth, L.D., H. Sheardown, and J.L.J.L. Brash, Protein-resistant poly (ethylene oxide)-grafted surfaces: chain density-dependent multiple mechanisms of action. Langmuir, 2008. 24(5): p. 1924-1929. 93. Ratner, B.D., et al., Biomaterials science: an introduction to materials in medicine. 2004: Elsevier. 94. Tsai, W.-C., I.-C.J.S. Li, and A.B. Chemical, SPR-based immunosensor for determining staphylococcal enterotoxin A. Sensors and Actuators B: Chemical, 2009. 136(1): p. 8-12. 95. Vu, C.-A., et al., Signal Enhancement of Silicon Nanowire Field-Effect Transistor Immunosensors by RNA Aptamer. ACS Omega. 96. Filipiak, M.S., et al., Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors. Sensors and Actuators B: Chemical 255, 2018: p. 1507-1516. 97. Andoy, N.M., et al., Graphene‐Based Electronic Immunosensor with Femtomolar Detection Limit in Whole Serum. Advanced Materials Technologies ,2018. 3(12): p. 1800186.
|