跳到主要內容

臺灣博碩士論文加值系統

(35.172.111.71) 您好!臺灣時間:2022/05/23 10:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳欣漢
研究生(外文):Hsin-Han Chen
論文名稱:利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定
論文名稱(外文):Development and verification of an optimal antifouling surface by surface plasmon resonance for immunoassay in human serum on field effect transistor
指導教授:陳文逸陳文逸引用關係
指導教授(外文):Wen-Yih Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:129
中文關鍵詞:表面電漿共振矽奈米線場效電晶體自組裝單層膜聚乙二醇
外文關鍵詞:surface plasmon resonanceSilicon nanowire field effect transistorSelf-assembled monolayerpoly (ethylene glycol)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 xi
表目錄 xvi
第一章 緒論 1
第二章 文獻回顧 3
2.1 汙損表面 3
2.1.1物理方法 4
2.1.2化學方法 5
2.1.3 聚乙二醇 6
2.1.4立體排斥 7
2.1.5水合作用 10
2.2表面電漿共振 11
2.2.1表面電漿共振原理 12
2.2.2表面電漿共振儀分類 14
2.2.3表面電漿共振儀 17
2.3矽奈米線場效電晶體生物感測器 20
2.4晶片改質 25
2.4.1自組裝單層膜表面改質技術 25
2.4.2表面分子固定化 29
2.4.3影響自組裝單層膜之因素 31
2.4.3.1反應溫度之影響 33
2.4.3.2硫醇類分子濃度之影響 36
2.4.3.3氫鍵形成之影響 37
第三章 實驗藥品、儀器設備與方法 41
3.1實驗藥品 41
3.2儀器設備 44
3.3實驗方法 46
3.3.1 SPR實驗 46
3.3.1.1 SPR晶片製備 46
3.3.1.2 SPR晶片之表面改質 46
3.3.1.3緩衝溶液配置 48
3.3.1.4 Antifouling實驗 49
3.3.1.5 SPRi interference實驗 50
3.3.2 FET實驗 51
3.3.2.1 FET 晶片之表面改質 51
3.3.2.2 緩衝溶液配製 52
3.3.2.3 電性測量 53
第四章 結果與討論 54
4.1表面接觸角 55
4.2 XPS表面元素分析 57
4.3 AFM 表面粗糙度分析 60
4.4表面材料抗非專一性吸附測試 63
4.4.1短鏈PEG抗非專一性吸附測試 64
4.4.1.1抗單一蛋白質吸附測試 65
4.4.1.2抗血清吸附測試 70
4.4.2長鏈PEG抗非專一性吸附測試 73
4.4.2.1抗單一蛋白質吸附測試 73
4.4.2.2抗血清吸附測試 77
4.5 免疫檢測 83
4.6最適化條件於FET之應用 85
第五章 結論與未來展望 90
5.1結論 90
5.2未來展望 92
第六章 參考文獻 93
第七章 附件 100
7.1 不同SAMs表面於不同處理下的粗糙度 100
7.2 COB檢測 106
1. Cole, N., et al., In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Investigative ophthalmology & visual science , 2010. 51(1): p. 390-395.
2. Donlan, R.M.J.C.I.D., Biofilm formation: a clinically relevant microbiological process. Clinical Infectious Diseases, 2001. 33(8): p. 1387-1392.
3. Vasilev, K., J. Cook, and H.J.J.E.r.o.m.d. Griesser, Antibacterial surfaces for biomedical devices. Expert review of medical devices , 2009. 6(5): p. 553-567.
4. Pavithra, D. and M.J.B.M. Doble, Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomedical Materials , 2008. 3(3): p. 034003.
5. Luna-Moreno, D., et al., Early detection of the fungal banana black sigatoka pathogen Pseudocercospora fijiensis by an SPR immunosensor method. Sensors , 2019. 19(3): p. 465.
6. Dutra, R.F., et al., Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer. Journal of pharmaceutical and biomedical analysis, 2007. 43(5): p. 1744-1750.
7. Gutiérrez-Sanz, Ó., et al., Transistor-based immunosensing in human serum samples without on-site calibration. Sensors and Actuators B: Chemical , 2019. 295: p. 153-158.
8. Yang, C., et al., Bactericidal functionalization of wrinkle-free fabrics via covalently bonding TiO 2@ Ag nanoconjugates. Journal of materials science , 2009. 44(7): p. 1894-1901.
9. Bozja, J., et al., Porphyrin‐based, light‐activated antimicrobial materials. Journal of Polymer Science Part A: Polymer Chemistry , 2003. 41(15): p. 2297-2303.
10. Almeida, E., T.C. Diamantino, and O.J.P.i.O.C. de Sousa, Marine paints: the particular case of antifouling paints. Progress in Organic Coatings , 2007. 59(1): p. 2-20.
11. Flemming, H.-C.J.A.m. and biotechnology, Biofouling in water systems–cases, causes and countermeasures. Applied microbiology and biotechnology, 2002. 59(6): p. 629-640.
12. Callow, J.A. and M.E.J.N.c. Callow, Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature communications , 2011. 2(1): p. 1-10.
13. Jain, A. and N.B.J.B. Bhosle, Biochemical composition of the marine conditioning film: implications for bacterial adhesion. Biofouling ,2009. 25(1): p. 13-19.
14. Lichtenberg, J.Y., Y. Ling, and S.J.S. Kim, Non-Specific Adsorption Reduction Methods in Biosensing. Sensors, 2019. 19(11): p. 2488.
15. Vaisocherová, H., et al., Functionalizable low-fouling coatings for label-free biosensing in complex biological media: advances and applications. Analytical and bioanalytical chemistry , 2015. 407(14): p. 3927-3953.
16. Blawas, A. and W.J.B. Reichert, Protein patterning. Biomaterials ,1998. 19(7-9): p. 595-609.
17. Pan, S., et al., Biofouling removal and protein detection using a hypersonic resonator. ACS sensors , 2017. 2(8): p. 1175-1183.
18. Zhang, H., M.J.J.o.m. Chiao, and b. engineering, Anti-fouling coatings of poly (dimethylsiloxane) devices for biological and biomedical applications. Journal of medical and biological engineering, 2015. 35(2): p. 143-155.
19. Riquelme, M.V., et al., Optimizing blocking of nonspecific bacterial attachment to impedimetric biosensors. Sensing and bio-sensing research, 2016. 8: p. 47-54.
20. Steinitz, M.J.A.b., Quantitation of the blocking effect of tween 20 and bovine serum albumin in ELISA microwells. Analytical biochemistry , 2000. 282(2): p. 232-238.
21. Sheikh, S., et al., Sacrificial BSA to block non‐specific adsorption on organosilane adlayers in ultra‐high frequency acoustic wave sensing. Surface and interface analysis , 2013. 45(11-12): p. 1781-1784.
22. Tacha, D.E. and L.J.J.o.H. McKinney, Casein reduces nonspecific background staining in immunolabeling techniques. Journal of Histotechnology , 1992. 15(2): p. 127-132.
23. Schlenoff, J.B.J.L., Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir , 2014. 30(32): p. 9625-9636.
24. Jeyachandran, Y., et al., Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. Journal of colloid and interface science, 2010. 341(1): p. 136-142.
25. Holmlin, R.E., et al., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir , 2001. 17(9): p. 2841-2850.
26. Zheng, J., et al., Strong repulsive forces between protein and oligo (ethylene glycol) self-assembled monolayers: a molecular simulation study. Biophysical journal, 2005. 89(1): p. 158-166.
27. Herrwerth, S., et al., Factors that determine the protein resistance of oligoether self-assembled monolayers− internal hydrophilicity, terminal hydrophilicity, and lateral packing density. Journal of the American Chemical Society ,2003. 125(31): p. 9359-9366.
28. Chen, S., et al., Controlled chemical and structural properties of mixed self-assembled monolayers of alkanethiols on Au (111). Langmuir , 2000. 16(24): p. 9287-9293.
29. Al-Ani, A., et al., Tuning the density of poly (ethylene glycol) chains to control mammalian cell and bacterial attachment. Polymers, 2017. 9(8): p. 343.
30. Mehne, J., et al., Characterisation of morphology of self-assembled PEG monolayers: a comparison of mixed and pure coatings optimised for biosensor applications. Analytical and bioanalytical chemistry , 2008. 391(5): p. 1783-1791.
31. Lokanathan, A.R., et al., Mixed poly (ethylene glycol) and oligo (ethylene glycol) layers on gold as nonfouling surfaces created by backfilling. Biointerphases , 2011. 6(4): p. 180-188.
32. Li, L., S. Chen, and S.J.J.o.B.S. Jiang, Polymer Edition, Protein interactions with oligo (ethylene glycol)(OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Journal of Biomaterials Science,2007. 18(11): p. 1415-1427.
33. Cao, C., et al., A strategy for sensitivity and specificity enhancements in prostate specific antigen-α1-antichymotrypsin detection based on surface plasmon resonance. Biosensors and Bioelectronics , 2006. 21(11): p. 2106-2113.
34. Zhao, C., et al., Effect of film thickness on the antifouling performance of poly (hydroxy-functional methacrylates) grafted surfaces. Langmuir , 2011. 27(8): p. 4906-4913.
35. Liu, X., et al., Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS applied materials & interfaces , 2014. 6(15): p. 13034-13042.
36. Chang, Y., et al., A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion. Langmuir ,2008. 24(10): p. 5453-5458.
37. Zhang, Z., et al., Blood compatibility of surfaces with superlow protein adsorption. Biomaterials, 2008. 29(32): p. 4285-4291.
38. Cheng, G., et al., A switchable biocompatible polymer surface with self‐sterilizing and nonfouling capabilities. Angewandte Chemie , 2008. 47(46): p. 8831-8834.
39. Zhang, Z., S. Chen, and S.J.B. Jiang, Dual-functional biomimetic materials: nonfouling poly (carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules, 2006. 7(12): p. 3311-3315.
40. Liu, K.-J. and J.L.J.M. Parsons, Solvent effects on the preferred conformation of poly (ethylene glycols). Macromolecules , 1969. 2(5): p. 529-533.
41. Abuchowski, A., et al., Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. Journal of Biological Chemistry ,1977. 252(11): p. 3578-3581.
42. Morra, M.J.J.o.B.S., Polymer Edition, On the molecular basis of fouling resistance. Polymer Edition, 2000. 11(6): p. 547-569.
43. Halperin, A.J.L., Polymer brushes that resist adsorption of model proteins: design parameters. Langmuir, 1999. 15(7): p. 2525-2533.
44. Pasche, S., et al., Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces. The Journal of Physical Chemistry B, 2005. 109(37): p. 17545-17552.
45. Unsworth, L.D., H. Sheardown, and J.L.J.L. Brash, Protein resistance of surfaces prepared by sorption of end-thiolated poly (ethylene glycol) to gold: effect of surface chain density. Langmuir , 2005. 21(3): p. 1036-1041.
46. Li, L., et al., Protein adsorption on oligo (ethylene glycol)-terminated alkanethiolate self-assembled monolayers: the molecular basis for nonfouling behavior. The Journal of Physical Chemistry B, 2005. 109(7): p. 2934-2941.
47. Prime, K.L. and G.M.J.J.o.t.A.C.S. Whitesides, Adsorption of proteins onto surfaces containing end-attached oligo (ethylene oxide): a model system using self-assembled monolayers. Journal of the American Chemical Society ,1993. 115(23): p. 10714-10721.
48. Zheng, J., et al., Molecular simulation study of water interactions with oligo (ethylene glycol)-terminated alkanethiol self-assembled monolayers. Langmuir ,2004. 20(20): p. 8931-8938.
49. Kitano, H., et al., Structure of water incorporated in sulfobetaine polymer films as studied by ATR‐FTIR. Macromolecular bioscience ,2005. 5(4): p. 314-321.
50. Clark Jr, L.C. and C.J.A.o.t.N.Y.A.o.s. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences ,1962. 102(1): p. 29-45.
51. Rogers, K.J.A.C.A., Recent advances in biosensor techniques for environmental monitoring. Analytica Chimica Acta , 2006. 568(1-2): p. 222-231.
52. Wood, R.W.J.P.o.t.P.S.o.L., On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science , 1902. 18(1): p. 269.
53. Fano, U.J.J., The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). JOSA ,1941. 31(3): p. 213-222.
54. Ladd, J., et al., Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids and Surfaces B: Biointerfaces , 2009. 70(1): p. 1-6.
55. Liu, J.T., et al., Surface plasmon resonance biosensor with high anti-fouling ability for the detection of cardiac marker troponin T. Analytica chimica acta,2011. 703(1): p. 80-86.
56. Ostatná, V., et al., Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance. Analytical and bioanalytical chemistry , 2008. 391(5): p. 1861-1869.
57. Touahir, L., et al., Localized surface plasmon-enhanced fluorescence spectroscopy for highly-sensitive real-time detection of DNA hybridization. Biosensors and Bioelectronics , 2010. 25(12): p. 2579-2585.
58. Cennamo, N., et al., D-shaped plastic optical fibre aptasensor for fast thrombin detection in nanomolar range. Scientific reports , 2019. 9(1): p. 1-9.
59. Silin, V., et al., SPR studies of the nonspecific adsorption kinetics of human IgG and BSA on gold surfaces modified by self-assembled monolayers (SAMs). Journal of colloid and interface science , 1997. 185(1): p. 94-103.
60. Karlsson, R., A. Michaelsson, and L.J.J.o.i.m. Mattsson, Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. Journal of immunological methods , 1991. 145(1-2): p. 229-240.
61. Ritchie, R.H.J.P.r., Plasma losses by fast electrons in thin films. Physical review,1957. 106(5): p. 874.
62. Fu, E., et al., Characterization of a wavelength-tunable surface plasmon resonance microscope. Review of scientific instruments, 2004. 75(7): p. 2300-2304.
63. Campbell, C.T. and G.J.B. Kim, SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials , 2007. 28(15): p. 2380-2392.
64. Piliarik, M., J.J.S. Homola, and A.B. Chemical, Self-referencing SPR imaging for most demanding high-throughput screening applications. Sensors and Actuators B: Chemical , 2008. 134(2): p. 353-355.
65. Piliarik, M., et al., Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensors and Actuators B: Chemical ,2007. 121(1): p. 187-193.
66. Tsai, C.-C., et al., Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection. Nanotechnology ,2011: p. 135503.
67. Chen, K.-I., B.-R. Li, and Y.-T.J.N.t. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano today , 2011. 6(2): p. 131-154.
68. Cui, Y., et al., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. science, 2001. 293(5533): p. 1289-1292.
69. Li, Z., et al., Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Letters, 2004. 4(2): p. 245-247.
70. Kind, M. and C.J.P.i.S.S. Wöll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science , 2009. 84(7-8): p. 230-278.
71. Sagiv, J.J.J.o.t.A.C.S., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society ,1980. 102(1): p. 92-98.
72. Capecchi, G., et al., Adsorption of CH 3 COOH on TiO 2: IR and theoretical investigations. Research on Chemical Intermediates , 2007. 33(3-5): p. 269-284.
73. Ulman, A.J.C.r., Formation and structure of self-assembled monolayers. Chemical reviews ,1996. 96(4): p. 1533-1554.
74. Foster, A.S. and R.M.J.T.J.o.c.p. Nieminen, Adsorption of acetic and trifluoroacetic acid on the TiO 2 (110) surface. The Journal of chemical physics , 2004. 121(18): p. 9039-9042.
75. Wang, G.M., W.C. Sandberg, and S.D.J.N. Kenny, Density functional study of a typical thiol tethered on a gold surface: ruptures under normal or parallel stretch. Nanotechnology, 2006. 17(19): p. 4819.
76. Soreta, T.R., Electrochemically deposited metal nanostructures for application in genosensors. 2009: Universitat Rovira i Virgili.
77. Niemeyer, C.M.J.A.C.I.E., Semisynthetic DNA–protein conjugates for biosensing and nanofabrication. Angewandte Chemie International Edition, 2010. 49(7): p. 1200-1216.
78. Rusmini, F., Z. Zhong, and J.J.B. Feijen, Protein immobilization strategies for protein biochips. Sensors and Actuators B: Chemical , 2007. 8(6): p. 1775-1789.
79. Yu, Q., et al., Detection of low-molecular-weight domoic acid using surface plasmon resonance sensor. Sensors and Actuators B: Chemical , 2005. 107(1): p. 193-201.
80. Cohen-Atiya, M. and D.J.J.o.E.C. Mandler, Studying thiol adsorption on Au, Ag and Hg surfaces by potentiometric measurements. Journal of Electroanalytical Chemistry , 2003. 550: p. 267-276.
81. Carrascosa, L.G., et al., Understanding the role of thiol and disulfide self-assembled DNA receptor monolayers for biosensing applications. European Biophysics Journal , 2010. 39(10): p. 1433-1444.
82. Schreiber, F.J.P.i.s.s., Structure and growth of self-assembling monolayers. Progress in surface science , 2000. 65(5-8): p. 151-257.
83. Li, L., S. Chen, and S.J.L. Jiang, Protein adsorption on alkanethiolate self-assembled monolayers: nanoscale surface structural and chemical effects. Langmuir , 2003. 19(7): p. 2974-2982.
84. Bain, C.D., et al., Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. Journal of the American Chemical Society, 1989. 111(1): p. 321-335.
85. Wang, H., et al., Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir, 2005. 21(7): p. 2633-2636.
86. Luz, J.G., et al., Development and evaluation of a SPR-based immunosensor for detection of anti-Trypanosoma cruzi antibodies in human serum. Sensors and Actuators B: Chemical , 2015. 212: p. 287-296.
87. Chen, S., et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
88. Piliarik, M., et al., Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosensors and Bioelectronics, 2010. 26(4): p. 1656-1661.
89. Hayashi, T., et al., Mechanism underlying bioinertness of self-assembled monolayers of oligo (ethyleneglycol)-terminated alkanethiols on gold: protein adsorption, platelet adhesion, and surface forces. Physical Chemistry Chemical Physics, 2012. 14(29): p. 10196-10206.
90. Ladd, J., et al., Direct detection of carcinoembryonic antigen autoantibodies in clinical human serum samples using a surface plasmon resonance sensor. Colloids and Surfaces B: Biointerfaces ,2009: p. 1-6.
91. Bian, S., et al., Development and validation of an optical biosensor for rapid monitoring of adalimumab in serum of patients with Crohn's disease. Drug testing and analysis ,2018. 10(3): p. 592-596.
92. Unsworth, L.D., H. Sheardown, and J.L.J.L. Brash, Protein-resistant poly (ethylene oxide)-grafted surfaces: chain density-dependent multiple mechanisms of action. Langmuir, 2008. 24(5): p. 1924-1929.
93. Ratner, B.D., et al., Biomaterials science: an introduction to materials in medicine. 2004: Elsevier.
94. Tsai, W.-C., I.-C.J.S. Li, and A.B. Chemical, SPR-based immunosensor for determining staphylococcal enterotoxin A. Sensors and Actuators B: Chemical, 2009. 136(1): p. 8-12.
95. Vu, C.-A., et al., Signal Enhancement of Silicon Nanowire Field-Effect Transistor Immunosensors by RNA Aptamer. ACS Omega.
96. Filipiak, M.S., et al., Highly sensitive, selective and label-free protein detection in physiological solutions using carbon nanotube transistors with nanobody receptors. Sensors and Actuators B: Chemical 255, 2018: p. 1507-1516.
97. Andoy, N.M., et al., Graphene‐Based Electronic Immunosensor with Femtomolar Detection Limit in Whole Serum. Advanced Materials Technologies ,2018. 3(12): p. 1800186.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊