(3.233.221.149) 您好!臺灣時間:2020/02/23 07:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:韓嘉緯
研究生(外文):Jia-wei Han
論文名稱:以射頻磁控濺鍍方式鍍製含氫微晶矽薄膜並探討其應用於薄膜太陽能電池之可能性
論文名稱(外文):Fabrication of Hydrogenated microcrystalline Silicon Thin Films Using RF Magnetron Sputtering
指導教授:李正中李正中引用關係
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:55
中文關鍵詞:太陽能電池物理氣相沈積法微晶矽
外文關鍵詞:microcrystalline SiliconPVDSolar cell
相關次數:
  • 被引用被引用:6
  • 點閱點閱:176
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於含氫之微晶矽薄膜比非晶矽薄膜的電性更佳,因而受到重視。製作含氫之微晶矽薄膜目前之主流製程為以電漿輔助之化學氣相沈積法(PECVD)。但PECVD的缺點在於設備成本高,且使用SiH4等有毒氣體。然而以射頻磁控濺鍍法來製作則可免除這些缺點,但很不幸地,一般以射頻磁控濺鍍法所製作出的都是非晶矽。因此本研究中,希望在較低之基板溫度條件下(Ts=250 ℃),能使用氫氣混入氬氣之方式鍍製出含氫之微晶矽薄膜。吾對於以不同氫氣流量、電源功率和基板溫度所製作出之薄膜進行晶粒大小、結晶比例和電性(暗導電率、光導電率、光導電率和暗導電率之比值photosensitivities)之量測分析。實驗結果顯示,晶粒大小、結晶比例和導電率會隨著氫氣流量的增加而增加,而photosensitivities卻相對減少;當氫氣流量達到適量時,晶粒大小可達20nm,結晶比例可達到80%以上。
Hydrogenated microcrystalline silicon (μc-Si:H ) thin films have attracted many attentions due to the high mobility compared with the amorphous silicon (a-Si) thin films. To fabricate μc-Si:H thin films plasma-enhance chemical vapor deposition (PECVD) is the most popular method. The disadvantages of PECVD are the high facility cost and using the toxic processing gases such as silane (SiH4). Whereas there is no these disadvantages using radio-frequency (RF) magnetron sputtering to deposit silicon thin films. Unfortunately, the silicon thin films deposited by the regular RF magnetron sputtering are a-Si. In this study, μc-Si:H thin films were fabricated using RF magnetron sputtering with argon and hydrogen as working gas at low substrate temperature (Ts=250℃). The grain sizes, crystal volume fractions and photosensitivities (ratios of dark conductivities and photo conductivities) of the μc-Si:H thin films which deposited with different hydrogen partial pressures and sputtering powers were analyzed. The results showed that the grain sizes and the crystal volume fractions were increased and the photosensitivities were decreased as the hydrogen gas flow increased. The grain sizes were between 15 to 20 nm and the crystal volume fractions were between 75 to 80% at high hydrogen gas flow .
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1前言 1
1-2太陽能電池及其運作原理 3
1-2-1薄膜太陽能電池構造 5
1-3研究動機與目的 7
第二章 理論基礎及文獻回顧 10
2-1物理氣相沈積法 10
2-2濺鍍原理 11
2-2-1電漿原理 11
2-2-2射頻反應式磁控濺鍍原理 12
2-3製作多晶矽薄膜之方式 14
2-3-1固相結晶法 14
2-3-2準分子雷射退火法 15
2-3-3金屬誘發結晶法 17
2-3-4直接沈積多晶矽薄膜 17
2-4直接沈積微晶矽薄膜之機制 18
2-4-1氫對成長多晶矽薄膜之影響 18
第三章 實驗步驟與研究方法 20
3-1實驗流程 20
3-2實驗設備 21
3-2-1實驗用氣體與材料 21
3-2-2鍍膜儀器設備 21
(a)射頻磁控濺鍍系統 21
3-3實驗步驟 22
3-4量測分析儀器 24
3-4-1表面輪廓儀 24
3-4-2 X光繞射儀 24
3-4-3拉曼光譜儀 26
3-4-4傅立葉轉換紅外線光譜儀 28
3-4-5日光模擬光源/四點探針/微電流計 28
第四章 實驗結果與討論 29
4-1膜厚、厚度均勻性、鍍膜速率 29
4-2在200W;250℃參數下,直接沈積微晶矽薄膜 31
4-2-1矽氫鍵結 31
4-2-2結晶特性 33
4-2-3薄膜電性 37
4-3在200W;350℃參數下,直接沈積微晶矽薄膜 39
4-3-1矽氫鍵結 39
4-3-2結晶特性 40
4-3-3薄膜電性 43
4-4在400W;250℃參數下,直接沈積微晶矽薄膜 44
4-4-1矽氫鍵結 44
4-4-2結晶特性 45
4-4-3薄膜電性 48
4-5薄膜光劣化現象之探討 50
第五章 結論 51
參考文獻 52
1.莊嘉琛, "太陽能工程-太陽電池篇",台北, 全華科技圖書股份有限公司(1997).
2.S. Ray, C. Das, S. M., S. C. Saha, “Substrate temperature and hydrogen dilution: parameters for amorphous to microcrystalline phase transition in silicon thin films”, Solar Energy Materials & Solar Cells, 74, pp. 393-400(2002).
3.李正中, “薄膜光學與鍍膜技術”, 台北, 藝軒圖書出版社(第四版) (2004).
4.伍秀菁、汪若文、林美吟, “真空技術與應用”, 新竹市, 國科會精儀中心(初版)(2001).
5.A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T. Suzuki, K. Miyata, and H. Kawakami, “High performance low-temperature poly-Si n-channel TFTs for LCD”, IEEE Trans. Electron Devices, 36, 351(1989).
6.N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, 40, 1876 (1994).
7.M. Cao, S. Talwar, K. J. Kramer, T. W. Sigmon, and K. C. Saraswat, “A high-performance polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films”, IEEE Trans. Electron Devices, 43, 561(1996).
8.G. K. Giust and T. W. Sigmon, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering”, IEEE Trans. Electron Devices, 43, 561 (1996).
9.O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature”, Appl. Phys. Lett. 73, 3214 (1998).
10.K. Andrade and J. Jang, “Gold Induced Crystallization of Amorphous Silicon”, Journal of the Korean Physical Society, 39, 376 (2001).
11.Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films”, J. Appl. Phys. 84, 194 (1998).
12.S. W. Lee, Y. C. Jeon, and S. K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett. 66, 1671 (1995).
13.S. Ray , S. Mukhopadhyay , T. Jana , R. Carius “Transition from amorphous to microcrystalline Si:H: effects of substrate temperature and hydrogen dilution” Journal of Non-Crystalline Solids, 299–302, 761–766(2002).
14.S. Klein , T. Repmann, T. Brammer, ” Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD”, Solar Energy, 77, 893–908 (2004).
15.H. Makihara, A. Tabata, Y. Suzuoki, T. Mizutani, “Effect of the hydrogen partial pressure ratio on the properties ofμc-Si:Hfilms prepared by RF magnetron sputtering”, Vacuum, 59, 785-791(2000).

16.O. Vetterl, F. Finger*, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MuK ck, B. Rech, H. Wagner, “Intrinsic microcrystalline silicon:A new material for photovoltaics”, Solar Energy Materials & Solar Cells, 62 , 97-108(2000)
17.J. Rudiger, H. Brechtel, A. Kottwitz, J. Kuske, U. Stephan, “VHF plasma processing for in-line deposition systems”, Thin Solid Films, 427 , 16(2003).
18.L. Guo, M. Kondo, M. Fukawa, K. Saitoh, A. Matsuda, “High rate deposition of microcrystalline silicon thin films with conventional RF PECVD”, Jpn. J. Appl. Phys., 37, L1116(1998).
19.G. H. Lee, J. H. Yoon,” Role of Hydrogen in the Grain Growth in Microcrystalline Silicon Films”, Mater. Res. Soc. Symp. Proc. 910( 2006).
20.A. Matsuda, “Formation Kinetics and Control of Microcrystalline in uc-Si:H From Glow Dischrage Plasma”, J. Non-Cryst. Solids, 59/60, 767 (1983).
21.C.C. Tsai, G.B. Anderson, R. Thompson, B. Wacker, “Control of Silicon Network Structure in Plasma Deposition”, J. Non-Cryst. Solids, 114, 151 (1989).
22.K. Nakamura, K. Yoshida, S. Takeoka, I. Shimizu, “Roles of Atomic Hydrogen in Chemical Annealing”, Jpn. J. Appl. Phys., 34, 442 (1995).
23.許樹恩、吳泰伯, X光繞射原理與材料結構分析, 國科會精儀中心, 台北市
24.H. Makihara, A. Tabata, Y. Mizutani, “Effect of the hydrogen partial pressure ratio on the properties of μc-Si:H films prepare by rf magnetron sputtering”, Vacuum, 59, 785-791(2000)
25.M. Ohring, Materials Science Of Thin Films, Academic Press(Second Edition), USA(2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔