跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:項成凱
研究生(外文):Cheng-kai Xiang
論文名稱:使用慣性傳感器構建即時人體骨架動作
論文名稱(外文):Using Multiple Inertial Sensors for the Construction of Real-time Human Skeleton Animation
指導教授:施國琛施國琛引用關係
指導教授(外文):Timothy K. Shih
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:80
中文關鍵詞:人機互動體感偵測虛擬實境穿戴式人體感測網路複健
外文關鍵詞:HCIMotion trackingVirtual realityWearableBody sensor networkRehabilitation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
自從人類製造使用機器以來,人機互動就是成為十分重要的議題。近年來,隨著電腦產業的不斷更迭,人機互動也進入了新的時代。
以影像處理為核心技術的微軟體感感測器Kinect,雖然有較為成熟的技術和十分方便的使用結果,但是由於影像採集所需要的在視線範圍內的缺憾,使用者必須站在深度相機能照到的範圍內,並且極易受到環境內的物件的干擾。本項目針對佩戴式的體感偵測的方法進行系統、深入地研究,以期通過使用現在發展迅速的感測器技術結合演算法,從而達到有效穩定的即時體感偵測系統。鑒於已經有一部分的佩戴式體感偵測的研究,本專案擬解決一下幾個關鍵技術,並取得相應創新性成果:第一,更高效,精確,小體積的體感偵測系統;第二,更好的移植性,使得系統可以真正的應用到現在生活所需,例如智慧電視等平臺。最後,將預期的系統與微軟體感感測器進行比較,以驗證成果的正確性和可能性。本系統使用多顆傳感器,構成人體感測網路,結果也還可應用於複健領域。

Research in Human-Computer Interaction (HCI) has gained interest in recent years and has fostered new ideas and expectations.
As the development of computer science, HCI has got into a new era. There are many kinds of human motion capture methods nowadays. Image based motion tracking system like Microsoft Kinect, it's good for use and easy for coding, but it still has disadvantages. This kind of method camera and human have to be line of sight (LOS), and it will be easily disturb by the object in the environment.
In this progress, we have compared 2 kinds of methods which are the most popular methods in HCI – Microsoft Kinect Sensor and Inertial Sensors. This progress presents a wearable real-time human motion capture system using inertial sensors, and result of our method has been compared with Microsoft Kinect Sensor. Some research have been done, in this progress several technology we want to achieve as following:
1. An efficient accurate motion tracking system;
2. We can use this system into daily life, like smart TV etc.
Several experiments have been performed to validate the effectiveness of our method. Our system using multiple sensors build a body sensor network system, and this system can also be used in Rehabilitation domain;

摘要 i
Abstract ii
Acknowledgements iii
Contents iv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background 3
1.3 Thesis Organization 3
Chapter 2 Related Works 5
2.1 Human Computer Interactive 6
2.1.1 Image Based Motion Capture 8
2.1.2 IR Image Based Motion Capture 10
2.1.3 Inertial Sensor Based Motion Capture 18
2.2 Describe of Motion 23
2.2.1 Euler Angle 23
2.2.2 Walking Estimation 25
2.3 Kinematics 28
2.3.1 Forward Kinematics 30
2.3.2 Inverse Kinematics 31
2.4 Kalman Filter 32
2.5 Back Propagation Neural Network 33
Chapter 3 Proposed Method 36
3.1 System Overview 36
3.1.1 Hardware Design 37
3.1.2 Model Design 38
3.2 Human Model Construction 39
3.2.1 Kinematics Human Model 40
3.2.2 Range of Motion 41
3.3 Extended Kalman Filter 46
3.3.1 Processing Model 46
3.3.2 Angle calculation 47
3.4 Gait Estimation 49
Chapter 4 Experimental Results and Discussions 52
4.1 Comparing with Kinect Result 52
4.1.1 Motion Tracking 52
4.1.2 Coordinate Diagram 55
4.2 Applications 57
4.2.1 Game Control 58
4.2.2 Walking Estimating 58
Chapter 5 Conclusions and Future Works 61
5.1 Conclusions 61
5.2 Future Works 63
References 64

[1] E. Foxlin and M. Harrington, “Weartrack: A self-referenced head and hand tracker for wearable computers and portable VR,” International Symposium on Wearable Computers, Atlanta, GA, USA, 16-17, pp. 155–162, 2000.
[2] J. C. Lementec and P. Bajcsy, “Recognition of arm gestures using multiple orientation sensors: gesture classification,” The 7th International IEEE Conference on Intelligent Transportation Systems, Washington DC, USA, 3-6, pp. 965–970, 2004.
[3] J. Lee and I. Ha, “Sensor fusion and calibration for motion captures using accelerometers,” Proc. IEEE International Conference on Robotics and Automation, pp. 1954-1959, 1999.
[4] R. Zhu and Z. Zhou, “A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors Package,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.12, no. 2, pp. 295-302, 2004.
[5] X. Yun, C. Aparicio, E. R. Bachmann, and R. B. McGhee, “Implementation and experimental results of a quaternion-based Kalman filter for human body motion tracking,” Proc. IEEE International Conference on Robotics and Automation, pp. 317-322, 2005.
[6] X. Yun and E. R. Bachmann, “Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking,” IEEE Transactions on Robotics, vol. 22, no. 6, pp.1216-1227, 2006.
[7] H. J. Luinge, P. H. Veltink, and C. T. M. Baten, “Ambulatory measurement of arm orientation,” Journal of Biomechanics, vol. 40, no. 1, pp. 78-85, 2007.
[8] A. Baumberg and D. Hogg, “An Efficient Method for Contour Tracking Using Active Shape Models,” Proc. Workshop Motion of Nonrigid and Articulated Objects. Los Alamitos, Calif.: IEEE CS Press, 1994.
[9] German K. M. Cheung and Jean-Yves Bouguet, “A Real Time System for Robust 3D Voxel Reconstruction of Human Motions,” Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference: vol.2, no. 2, pp. 714-720, Jun. 2000.
[10] Kazuyuki Imagawa, Shan Lu and Seiji Igi, “Color-Based Hands Tracking System for Sign Language Recognition,” Automatic Face and Gesture Recognition, 1998. IEEE Conference Proceedings: vol. 14, no.14, pp. 462-467, Apr 1998.
[11] H. Zhou, H. Hu, and Y. Tao, “Inertial Measurements of Upper Limb Motion,” Medical and Biological Engineering and Computing, vol. 44, no. 6, pp. 479-487, 2006.
[12] K. Kiguchi, M. H. Rahman, and T. Yamaguchi, “The Development and Test of a Device for the Reconstruction of 3-D Position and Orientation by Means of a Kinematic Sensor Assembly With Rate Gyroscopes and Accelerometers,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 7, pp. 1271-1277, 2005.
[13] H. Zhou, T. Stone, H. Hu, and N. Harris, “Use of Multiple Wearable Inertial Sensors in Upper Limb Motion Tracking,” Medical Engineering &; Physics, vol. 30, no. 1, pp. 123-133, 2008.
[14] J. Lee and I. Ha, “Sensor fusion and calibration for motion captures using accelerometers,” in Proceedings of IEEE International Conference on Robotics and Automation pp. 1954-1959, 1999.
[15] R. Zhu and Z. Zhou, “A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors Package,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, no. 2, pp. 295-302, 2004.
[16] X. Yun, C. Aparicio, E. R. Bachmann, and R. B. McGhee, “Implementation and experimental results of a quaternion-based Kalman filter for human body motion tracking,” in Proceedings of IEEE International Conference on Robotics and Automation, pp. 317-322, 2005.
[17] X. Yun and E. R. Bachmann, “Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking,” IEEE Transactions on Robotics, vol. 22, no. 6, pp.1216-1227, 2006.
[18] H. J. Luinge, P. H. Veltink, and C. T. M. Baten, “Ambulatory measurement of arm orientation,” Journal of Biomechanics, vol. 40, no. 1, pp. 78-85, 2007.
[19] Kong Y.Chen and David R. Bassett Jr., The Technology of Accelerometry-Based Activity Monitors: Current and Future, Medicine &; Science in Sports &; Exercise. 37(11) Supplement: S490-S500, November 2005.
[20] Scott. E. Crouter, Patrick L. Schneider, Murat Karabulut, and David R. Bassett Jr, “Validity of 10 Electronic Pedometers for Measuring Steps, Distance, and Energy Cost,” Medicine and Science in Sports and Exercise, 35(8):1455-1460, August 2003.
[21] Patrick L. Schneider, Scott E. Crouter, Olivera Lukajic, and David R.Bassett Jr., “Accuracy and Reliability of 10 Pedometers for Measuring Steps over a 400-m Walk,” Medicine &; Science in Sports &; Exercise.35(10):1779-1784, October 2003.
[22] Ion P. I Pappas, Milos R. Popovic, Thierry Kell, Volker Dietz, and Manfred Morari, “A Reliable Gait Phase Detection System,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 9, issue. 2, pp. 113-125 , June 2001.
[23] Wiebren Zijlstra and At L. Hof, “Displacement of the pelvis during human walking: experimental data and model predictions,” Gait and Posture, vol. 6, no. 3, pp. 249-262 , December 1997.
[24] Wiebren Zijlstra and At L. Hof, “Assessment of spatio-temporal gait parameters from trunk accelerations during human walking,” Gait &; Posture, vol. 18, issue. 2, pp. 1-10 October 2003.
[25] Koichi Sagawa, Yutaka Satoh, and Hikaru Inooka, “Non-restricted Measurement of Walking Distance,” in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, Nashville, TN., pp. 1847-1852 , October 2000.
[26] Angelo M. Sabatini, Chiara Martelloni, Sergio Scapellato, and FilippoCavallo, “Assessment of walking features from foot inertial sensing,” IEEE Transactions on Aerospace and Electronics Systems, vol. 52, no. 3, pp. 486-494, Mar. 2005.
[27] Filippo Cavallo, Angelo M. Sabatini, and Vincenzo Genovese, “A step toward GPS/INS personal navigation systems: real-time assessment of gait by foot inertial sensing,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005), Edmonton, Alberta, Canada, pp. 1187-1191 August 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊