(3.230.76.196) 您好!臺灣時間:2020/04/05 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:顏偉閔
研究生(外文):Wei-ming Yen
論文名稱:形狀記憶合金於抗震RC耦合牆系統之初步研究
指導教授:洪崇展
指導教授(外文):Chung-chan Hung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:248
中文關鍵詞:鎳鈦形狀記憶合金高性能纖維水泥複合材料懸臂梁
外文關鍵詞:Ni-Ti Shape Memory AlloyHigh Performance Fiber Reinforced Cementitious CompositesCantilever Beams
相關次數:
  • 被引用被引用:2
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為探討使用鎳鈦形狀記憶合金(Ni-Ti Shape Memory Alloy,之後簡稱SMA)提升結構抗耐震能力之有效性,研究可分為實驗與分析兩部分,實驗方面使用高性能纖維水泥複合材料(High Performance Fiber Reinforced Cementitious Composites,之後簡稱HPFRCCs)與SMA於懸臂梁試體之塑鉸區,並且施以非線性反覆加載實驗來探索使用HPFRCCs與SMA對於構件所能提升之效能。
分析方面則探討使用SMA於中高層RC耦合結構牆之塑鉸區時,整體結構系統所能提升之抗耐震能力。研究首先建立鋼筋混凝土與HPFRCCs結構構件之數值分析模型,其中使用修正壓力場理論建立結構構件之剪力與剪力變形之關係,並藉由文獻中連接梁構件的實驗結果,進行模型驗證與參數研究。而後建立六座中高層耦合牆系統之分析模型,系統參數為耦合率(50%與60%)、以及連接梁與結構牆塑鉸區內之SMA棒,之後使用非線性側推分析、反覆加載分析、以及進行不同層級地震下的非線性動力分析,探討使用SMA於耦合結構牆所能提升之性能。結果顯示,SMA無論於實驗或是分析中皆能發揮其超彈性性能,減少結構體於加載後之殘留變形。

The objective of this study is to explore the effectiveness of using Ni-Ti Shape Memory Alloy (SMA) in structures for increasing the seismic performance of earthquake-resistant structures. The study can be divided into two parts, i.e., the experimental program and computational investigation.
In the experimental program, four different cantilever beams are designed. The parameters include: 1) using High Performance Fiber Reinforced Cementitious Composites (HPFRCCs) to replace the traditional concrete material, 2) using SMA to replace the longitudinal steel bars in the plastic hinge regions of the cantilever beams, and 3) using plastic tape and oil on the longitudinal steel bars in the plastic zone of the beam to reduce the bond between rebar and concrete. The performance of the beams is evaluated using cycle-loading test.
In the computational investigation, SMA bars are employed in the critical regions in the RC coupled wall systems. The performance of the coupled wall systems is evaluated using nonlinear static analysis with cyclic loading and nonlinear dynamic analysis. The shear behavior of the structural component is addressed using the Modified Compression-Field Theory. The developed shear model is evaluated using the experimental results of several RC coupling beams in the literature. Six coupled wall systems are designed. The design parameters include the coupling ratios (50% and 60%) and the use of SMA bars in the coupling beams or the shear walls. The analysis results show that the use of SMA in the coupled wall systems is able to substantially reduce the residual deformation of the systems after the earthquake events.

目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 IX
表目錄 XX
第一章 緒論 1
1-1研究動機 1
1-2研究目的 3
1-3研究方法 3
1-4論文架構 4
第二章 文獻回顧 5
2-1高性能纖維混凝土水泥複合材料 5
2-2高性能纖維混凝土水泥複合材料之應用 10
2-3鎳鈦形狀記憶合金 13
2-4鎳鈦形狀記憶合金之應用 20
2-5耦合結構牆系統 37
2-5-1結構牆 38
2-5-2連接梁 39
2-5-3耦合率 40
第三章 高性能纖維混凝土水泥複合材料與鎳鈦形狀記憶合金數值模型驗證 43
3-1剪力行為模型 45
3-1-1高性能纖維混凝土水泥複合材料單軸單向應力應變模型 45
3-1-2單向載重下之剪應力應變關係 48
3-1-3反覆載重下之剪應力應變遲滯圈 54
3-2高性能纖維混凝土水泥複合材料模型驗證 56
3-2-1高性能纖維混凝土水泥複合材料連接梁模型驗證 57
3-2-2位移彈簧之參數研究 66
3-3鎳鈦形狀記憶合金材料模型驗證 69
3-3-1具鎳鈦形狀記憶合金之橋柱模型驗證 70
3-3-2具鎳鈦形狀記憶合金之高性能纖維混凝土連接梁模型分析 74
第四章 高性能纖維混凝土水泥複合材料與鎳鈦形狀記憶合金於懸臂梁結構之耐震消能實驗研究 79
4-1前言 79
4-2試驗程序 80
4-2-1實驗試體的設計與製作 80
4-2-2 材料試驗 83
4-3反覆載重實驗 92
4-4實驗結果比較 139
4-4-1試體遲滯行為 139
4-4-2試體撓曲主筋之應變 146
4-4-3試體閉合箍筋之應變 154
4-4-4試體梁腹矩形應力塊 156
第五章 含鎳鈦形狀記憶合金棒之鋼筋混凝土耦合牆系統地震行為 159
5-1前言 159
5-2耦合結構牆系統設計 160
5-3耦合結構牆分析模型建立 166
5-3-1連接梁剪力彈簧模型 168
5-4耦合結構牆系統非線性側推分析 175
5-5耦合結構牆系統非線性雙向反覆加載分析 177
5-6 高樓層耦合結構牆系統動態歷時分析 183
第六章 結論 214
參考文獻 220

參考文獻

【1】 Otani S, Hiraishi H, Midorikawa M. Development of smart systems for building structures. Proceedings of SPIE 2000;3988:2–9.

【2】 G. Song , N. Ma , H. –N. Li “Applications of shape memory alloys in civil structures” 2006 Elsevier Ltd. All rights reserved.doi:10.1016/j.engstruct.2005.12.010

【3】 Indirli M et al. Demo application of shape memory alloy devices: the rehabilitation of S. Georgio Church Bell Tower. Proceedings of SPIE 2001;4330:262–72.

【4】 Duerig TW et al. Engineering aspects of shape memory alloys. London:Butterworth-Heinemann; 1990.

【5】 Saadat S, Salichs J, Noori M, Hou Z, Davoodi H, Bar-on I, Suzuki Y,Masuda A. An overview of vibration and seismic application of NiTi shape memory alloy. Smart Materials and Structures 2002;11:218–29.

【6】 Wilde K, Gardoni P, Fujino Y. Base isolation system with shape memory alloy device for elevated highway bridges. Engineering Structures 2000;22:222–9.

【7】 Dolce M, Cardone D, Marnetto R. SMA re-centering devices for seismic isolation of civil structures. Proceedings of SPIE 2001;4330:238–49.

【8】 Khan MM, Lagoudas D. Modeling of shape memory alloy pseudoelastic spring elements using Preisach model for passive vibration isolation.Proceedings of SPIE 2002;4693:336–47.

【9】 Mayes JJ, Lagoudas D, Henderson BK. An experimental investigation of shape memory alloy pseudoelastic springs for passive vibration isolation.In: AIAA space 2001 conference and exposition. 2001.

【10】 Corbi O. Shape memory alloys and their application in structural
oscillations attenuation. Simulation Modeling Practice and Theory 2003;11:387–402.

【11】 Clark P, Aiken I, Kelly J, Higashino M, Krumme R. Experimental and analytical studies of shape memory alloy dampers for structural control.In: Proceedings of passive damping. 1995.

【12】 Han YL, Li QS, Li AQ, Leung AYT, Lin PH. Structural vibration control by shape memory alloy damper. Earthquake Engineering and Structural Dynamics 2003;32:483–94.

【13】 Li H, Liu M, Ou JP. Vibration mitigation of a stay cable with one shape memory alloy damper. Structural Control and Health Monitoring 2004;11:1–36.

【14】 DesRoches R, Delemont M. Seismic retrofit of simply supported bridges using shape memory alloys. Engineering Structures 2002;24:325–32.

【15】 Tamai H, Kitagawa Y. Pseudoelastic behavior of shape memory alloy wires and its application to seismic resistance member for building.Computational Materials Science 2002;25:218–27.

【16】 Leon RT, DesRoches R, Ocel J, Hess G. Innovative beam column using shape memory alloys. Proceedings of SPIE 2001;4330:227–37.

【17】 Sakai Y, Kitagawa Y, Fukuta T, Iiba M. Experimental study on
enhancement of self-restoration of concrete beams using SMA wire.Proceeding of SPIE 2003;5057:178–86.

【18】 Otero K. Intelligent reinforced concrete structures using shape memory alloys. M.S. thesis. Advisor: Dr. G. Song, University of Houston; 2004.

【19】 Song G, Mo YL. Increasing concrete structural survivability using smart materials. A proposal submitted to Grants to Enhance and Advance Research (GEAR), University of Houston; January 2003.

【20】 Mo YL, Song G, Otero K. Development and testing of a proof-of-concept smart concrete structure. In: Proceeding of smart structures technologies and earthquake engineering. 2004.

【21】 Andrawes B, DesRoches R. School of Civil and Environmental Engineering,Georgia Institute of Technology, Atlanta,GA 30332-0355,USA Received 2 April 2004, in final form 26 February 2005 Published 26 May 2005 Online atstacks.iop.org/SMS/14/S60

【22】 M. Saiid Saiidi, Melissa O’Brien, and Mahmoud Sadrossadat-Zadeh. ACI Structural Journal, V. 106, No. 1, January-February 2009.

【23】 Ocel, J., DesRoches, R., Leon, R. T., Hess, W. G., Krumme, R., Hayes, J. R., and Sweeney, S.,2004. Steel beam-column connections using shape memory alloys, J. Struct. Eng. 130, 732–740.

【24】 Indirli M et al. Demo application of shape memory alloy devices: the rehabilitation of S. Georgio Church Bell Tower. Proceedings of SPIE 2001;4330:262–72.

【25】 John C.Wilson, and Michael J.Wesolowsky. Earthquake Spectra, Volume 21, No. 2, pages 569–601, May 2005; © 2005, Earthquake Engineering Research Institute

【26】 C.-C. Hung, B.-T. Tseng, W.-G. You, J.-L. Huang, Effectiveness of using high performance fiber reinforced concrete in coupled structural walls for improving seismic performance, Structural Engineering, Chinese Society of Structural Engineering. 26(4) (2011) 3-16.

【27】 C.-C. Hung, Y.-F. Su, K.-H. Yu, Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites, Construction and Building Materials. 41 (2013) 37-48.

【28】 C.-C. Hung, S.-H. Li, Three-dimensional model for analysis of high performance fiber reinforced cement-based composites, Composites Part B: Engineering. 45 (2013) 1441-1447.

【29】 C.-C. Hung, S. El-Tawil, Seismic behavior of a coupled wall system with hpfrc materials in critical regions, ASCE Journal of Structural Engineering. 137(2) (2011) 1395-1636.

【30】 C.-C. Hung, S. El-Tawil, Hybrid rotating/fixed-crack model for high performance fiber reinforced cementitious composites, ACI Materials Journal. 107(6) (2010) 569-577.

【31】 T.W. Duerig, K.N. Melton, D. Stockel, C. M. Wayman, Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London, 1990.

【32】 Liao, W.-C., A.E. IN-PLANE PURE SHEAR PANEL TEST OF SELF-CONSOLIDATING HIGH PERFORMANCE FIBER REINFORCED CONCRETE (SCHPFRC)The 5th Cross-strait Conference on Structural and Geotechnical Engineering (SGE-5), Hong Kong, China, 13-15 July 2011

【33】 Sezen, H., and Setzler, E. J., “Reinforcement slip in reinforced
concrete columns.” ACI Structral Journal, 105(3), (2008).

【34】 Setzler, E. J., and Sezen, H., “Model for the lateral behavior of reinforced concrete columns including shear deformations.” Earthquake Spectra, 24(2), 493–511(2008).

【35】 Chou, S.-H., Naaman, A. E., and Parra-Montesions, G. J., “Bond behavior of strand embedded in fiber reinforced cementitious composites.” PCI Journal, November-December (2006).
【36】 Canbolat, B. A., Parra-Montesinos, G. J., and Wight, J. K., “Experimental study on seismic behavior of high-performance fiber-reinforced cement composite coupling beams.” ACI Structral Journal,102(1), 159-166, (2005).

【37】 Kim, D. J., “Strain rate effect on high performance fiber reinforced cementitious composites using slip hardening high strength deformed steel fibers.” University of Michigan, Doctor's Thesis, (2009)


【38】 Kim, D.-Y., and Kwak, H.-G, “Cracking behavior of RC shear walls subject to cyclic loadings.” Department of Civil and Environmental Engineering, 1(1), 77-98, (2004).

【39】 Vecchio, F. J., and Collins, M. P. ‘‘The modified compression field theory for reinforced concrete elements subjected to shear.’’ ACI Struct. J., 83(2), 219–231, (1986).


【40】 Parra-Montesino, G. J. “High-performance fiber reinforced cement composites: an alternative for seismic design of structures.” ACI Structural Journal,102(5),668-675 (2005).

【41】 Parra-Montesinos, G. J., Canbolat, B. A., and Jeyaraman, G, R., “Relaxation of confinrment eeinforcement eequirement in structural walls through the use of fiber reinforced cement composites.” 8th National Conference on Earthquake Engineering, San Francisco, CA, Apr. (2006).

【42】 Pinto, A.V., Molina, L., and Tsionis, G., “Cyclic tests on large-scale models of existing bridge piers with rectangular hollow cross-section.” Earthquake Engineering and Structural Dynamics, 32(13), 1995-2012, (2003).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔