|
References [1] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater., vol. 9, pp. 205-214, Mar. 2010. [2] Y. Cui, J. Xu, K. H. Fung, Y. Jin, A. Kumar, S. He and N. X. Fang, “A thin film broadband absorber based on multi-sized nanoantennas,” Appl. Phys. Lett., vol. 99, pp. 253101, 2011. [3] C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics, vol. 8, pp. 95-103, Feb. 2014. [4] Y. K. Lee, H. Lee and J. Y. Park, “Tandem-structured, hot electron based photo- voltaic cell with double Schottky barriers,” Sci. Rep., vol. 4, pp. 4580, Apr. 2014. [5] F.Wang, N. A. Melosh, “Plasmonic energy collection through hot carrier extraction,” Nano Lett., vol. 11, pp. 5426-5430, Oct. 2011. [6] H. Chalabi, D. Schoen, and M. L. Brongersma, “Hot-Electron photodetection with a plasmonic nanostripe antenna,” Nano Lett., vol. 14, no. 3, pp. 1374-1380, Feb. 2014. [7] F. B. Atar, E. Battal, L. E. Aygun, B. Daglar, M. Bayindir, and A. K. Okyay, “Plas- monically enhanced hot electron based photovoltaic device,” Opt. Express, vol. 21, no. 6, pp. 7196 - 7201, Oct. 2013.
[8] C. Ng, J. Cadusch, S. Dligatch, A. Roberts, T. J. Davis, P. Mulvaney, and D. E. Gomezy, “Hot carrier extraction with plasmonic broadband absorbers,” ACS Nano, vol. 10, pp. 4704-4711, Mar. 2016. [9] T. Gong and J. N. Munday, “Angle-independent hot carrier generation and collection using transparent conducting oxides,” Nano Lett., vol. 15, pp. 147-152, Dec. 2015. [10] Y. Fang, Y. Jiao, K. Xiong, R. Ogier, Z-J. Yang, S. Gao, A. B. Dahlin and M. Kall, “Plasmon enhanced internal photoemission in antenna-spacer-mirror based Au/TiO2 nanostructures,” Nano Lett., vol. 15, pp. 4059-4065, Mar. 2015. [11] K. Wu, Y. Zhan, S. Wu, J. Deng, and X. Li, “Surface-plasmon enhanced photode- tection at communication band based on hot electrons,” J.Appl. Phys., vol. 18, pp. 063101-063110, Aug. 2015. [12] K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization- independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun., vol. 2, pp. 517-524, Nov. 2011. [13] M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express, vol. 20, no. 12, pp. 13311-13320, 2012. [14] S. A. Maier, Plasmonics: fundamentals and applications. Springer Science and Busi- ness, 2007. [15] M. Fox, Optical Properties of Solids. Oxford University Press, New York, 2011. [16] A. D. Semenov, G. N. Gol’tsman, and R. Sobolewski, “Hot-electron effect in su- perconductors and its applications for radiation sensors,” Supercond. Sci. Technol., vol. 15, pp. R1-R16, Mar. 2002.
[17] J. J. Quinn, “Range of excited electrons in metals,” Phys. Rev., vol. 126, no. 4, pp. 1453-1458, May 1962. [18] R. N. Stuart, F. Wooten, W. E. Spicer, “Mean free path of hot electrons and holes in metals,” Phys. Rev. Lett., vol. 10, no. 1, pp. 7-10, Jan. 1963. [19] R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev., vol. 38, pp. 45-57, July 1931. [20] S. Mubeen, J. Lee, W-R Lee, N. Singh, G. D. Stucky, and M. Moskovits, “On the Plasmonic Photovoltaic,” ACS Nano, vol. 8, no. 6, pp. 6066-6073, May 2014. [21] Y. Tian and T. Tatsuma, “Plasmon-induced photoelectrochemistry at metal nanopar- ticles supported on nanoporous TiO2,” Chem. Commun, pp. 1810-1811, 2004. [22] Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc, vol. 127, pp. 7632-7637, 2005. [23] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, vol. 14, no. 3, pp. 302-307, Jan. 1996. [24] C-C Chao, C-M Wang, and J-Y Chang, “Spatial distribution of absorption in plas- monic thin film solar cells,” Opt. Express, vol. 18, no. 11, pp. 11763-11771, May 2010. [25] M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevol- nyi,“Continuous layer gap plasmon resonators,” Opt. Express, vol. 19, no. 20, pp. 19310-19322, Sept. 2011.
[26] J. Jung, T. Søndergaard, and A. Bozhevolnyi, “Gap plasmon-polariton nanores- onators: Scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B, vol. 79, no. 3, pp. 035401, 2009. [27] T. Søndergaard and S. I. Bozhevolnyi, “Slow-plasmon resonant nanostructures: Scat- tering field enahncements,” Phys. Rev. B, vol. 75, no. 7, pp. 073402, 2007. [28] T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express, vol. 15, no. 7, pp. 4198-4204, 2007. [29] T. Søndergaard, J. Beermann, A. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: Analysis and demonstration,” Phys. Rev. B, vol. 77, no. 11, pp. 115420, 2008. [30] Available:https://kb.lumerical.com/en/layout analysis pabs divergence py- onting.html. [31] E. D. Palik, “Handbook of Optical Constants I-III,” Elsevier, 1997. [32] P. B. Johnson and R. W. Christy., “Optical constants of the noble metals,” Phys. Rev. B, vol. 6, pp. 4370-4379, Dec. 1972. [33] A. D. Raki´c, A. B. Djuriˇsic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt., vol. 37, pp. 5271-5283, Aug. 1998. [34] I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am., vol. 62, pp. 1405, 1972. [35] Available:http://www.enli.com.tw/s/en/2/product/Total-Quantum-Efficiency- Solutions-for-Solar-Cells-QE-R-130888.html.
|