|
[1] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel and A. Hagfeldt, "Dye-sensitized solar cells for efficient power generation under ambient lighting" Nat. Photon. 2017, 11, 372–378. [2] a) "http: // www. pveducation. org / pvcdrom / appendices / standard -solar- spectra"; b) "http: // www. laserfbcusworld. com / articles / 2009 / 05 / photovoltaics– measuring– the- sun. html". [3] "https://www.pveducation.org/pvcdrom/solar-cell-operation/impact-of-both-series-and-shunt-resistance". [4] E. Becquerel, "Mémoire sur les effets électriques produits sous l'influence des rayons solaires" C. R. Acad. Sci. 1839, 9, 561–567. [5] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, "Electrolytes in dye-sensitized solar cells" Chem. Rev. 2015, 115, 2136–2173. [6] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. H. Ebinger, M. Yoshita, A. W. Y. H. Baillie, "Solar cell efficiency tables (version 53)" Prog. Photovolt. Res. Appl. 2019, 27, 3–12. [7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell" Nature 1976, 261, 402–403. [8] B. Regan and M. Grätzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature 1991, 353, 737–740. [9] J. Wu, Z. Lan, J. Lin, M. Huang and Y. Huang, "Counter electrodes in dye-sensitized solar cells" Chem. Soc. Rev. 2017, 46, 5975–6023. [10] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-sensitized solar cells" Chem. Rev. 2010, 110, 6595–6663. [11] S. Yun, P. D. Lund and A. Hinsch, "Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells" Energy Environ. Sci. 2015, 8, 3495–3514. [12] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes" Chem. Commun. 2015, 51, 15894–15897. [13] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Grätzel, C. G. Wu and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells" ACS Nano 2009, 3, 3103–3109. [14] S. Mathew, A. Yelia, P. Gao, R. H. Baker, B. F. Curchod, N. A. Astani, I. Tavemelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers" Nat. Chem. 2014, 6, 242–247. [15] M. K. Nazeeruddin, I. R. A. Kay, R. H. Baker, P. L. E. Mueller, N. Vlachopoulos and M. Grätzel, "Conversion of light to electricity by cis-X2bis (2,2-bipyridyl-4,4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes" J. Am. Chem. Soc. 1993, 115, 6382–6390. [16] a) M. K. Nazeeruddin, R. H. Baker, P. Liska, and M. Grätzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell" J. Phys. Chem. B 2003, 707, 8981–8987; b) M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photo-electrochemical cell ruthenium sensitizers" J. Am. Chem. Soc. 2005, 727, 16835–16847. [17] M. K. Nazeeruddin, T. R. P. Pechy, S. M. Zakeeruddin, R. H. Baker, P. Comte, L. C. P. Liska, E. Costa, V. Shklover, G. B. D. L. Spiccia, C. A. Bignozzi and M. Grätzel, "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells" J. Am. Chem. Soc. 2001, 123, 1613–1624. [18] a) C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin and P. T. Chou, "Ruthenium (II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells" Angew. Chem. Int. Ed. 2011, 50, 2054–2058; b) C. W. Hsu, S. T. Ho, K. L. Wu, Y. Chi, S. H. Liu, and P. T. Chou, "Ru (II) sensitizers with a tridentate heterocyclic cyclometalate for dye-sensitized solar cells" Energy. Environ. Sci. 2012, 5, 7549–7554. [19] S. H. Yang, K. L. Wu, Y. Chi, Y. M. Cheng and P. T. Chou, "Tris (thiocyanate) ruthenium (II) sensitizers with functionalized dicarboxyterpyridine for dye-sensitized solar cells" Angew. Chem. Int. Ed. 2011, 50, 8270–8274. [20] H. W. Lin, Y.-S. Wang, Z. Y. Huang, Y. M. Lin, C. W. Chen, S. H. Yang, K. L. Wu, Y. Chi, S. H. Liu and P. T. Chou, "Origins of device performance in dicarboxyterpyridine Ru (II) dye-sensitized solar cells" Phys. Chem. Chem. Phy. 2012, 14, 14190–1495. [21] M. Kimura, J. Masuo, Y. Tohata, K. Obuchi, N. Masaki, T. N. Murakami, N. Koumura, K. Hara, A. Fukui, R. Yamanaka and S. Mori, "Improvement of TiO2/dye/electrolyte interface conditions by positional change of alkyl chains in modified panchromatic Ru complex dyes" Chem. Eur. J. 2013, 19, 1028–1034. [22] L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang and M. Yanagida, "High-efficiency dye-sensitized solar cell with a novel co-adsorbent" Energy. Environ. Sci. 2012, 5, 6057–6060. [23] Y. Numata, S, P. Singh, A. Islam, M. Iwamura, A. Imai, K. Nozaki and L. Han, "Enhanced light-harvesting capability of a panchromatic Ru (II) sensitizer based on π-extended terpyridine with a 4-methylstyryl group for dye-sensitized solar cells" Adv. Funct. Mater. 2013, 23, 1817–1823. [24] H. Ozawa, T. Kuroda, S. Harada and H. Arakawa, "Efficient ruthenium sensitizer with a terpyridine ligand having a hexylthiophene unit for dye-sensitized solar cells: Effects of the substituent position on the solar cell performance" Eur. J. Inorg. Chem. 2014, 2014, 4734–4739. [25] H. Ozawa, K. Fukushima. A. Urayama and H. Arakawa, "Efficient ruthenium sensitizer with an extended pi-conjugated terpyridine ligand for dye-sensitized solar cells" Inorg. Chem. 2015, 54, 8887–8889. [26] H. Ozawa, Y. Tawaraya and H. Arakawa, "Effects of the alkyl chain length of imidazoliumiodide in the electrolyte solution on the performance of black-dye-based dye-sensitized solar cells" Electrochim. Acta. 2015, 151, 447–452. [27] H. Ozawa, T. Sugiura, T. Kuroda, K, Nozawa and H. Arakawa, "Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand" J. Mater. Chem. A, 2016, 4, 1762–1770. [28] F. Sauvage, J. D. Decoppet, M. Zhang, S. M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang and M. Grätzel, "Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells" J. Am. Chem. Soc. 2011, 133, 9304–9310. [29] M. Beley and P. C. Gros, "Ruthenium polypyridine complexes bearing pyrroles and π-extended analogues: synthesis, spectroelectronic, electrochemical, and photovoltaic properties" Organometallics, 2014, 33, 4590–4606. [30] J. D. Chai and M. H. Gordon, "Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections" Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [31] M. Liangwab and J. Chen, "Arylamine organic dyes for dye-sensitized solar cells" Chem. Soc. Rev. 2013, 42, 3453–3488. [32] Y. S. Yen, Y. C. Hsu, J. T. Lin, C. W. Chang, C. P. Hsu and D. J. Yin, "Pyrrole-based organic dyes for dye-sensitized solar cells" J. Phys. Chem. C, 2008, 112, 12557–12567. [33] 劉毓琪,2018,國立中央大學化學研究所論文 (應用於染料敏化太陽能電池之釕金屬錯合物合成與性質探討)。 [34] K. C. Ching, T. N. Q. Tran, S. N. Amrun, Y. W. Kam, L. F. P. Ng and C. L. L. Chai, "Structural optimizations of thieno[3,2-b]pyrrole derivatives for the development of metabolically stable inhibitors of chikungunya virus" J. Med. Chem. 2017, 60, 3165–3186. [35] C. Bulumulla, R. Gunawardhana, R. N. Kularatne, M. E. Hill, G. T. McCandless, M. C. Biewer and M. C. Stefan, "Thieno[3,2-b]pyrrole-benzothiadiazole banana-shaped small molecules for organic field-effect transistors" ACS Appl. Mater. Interfaces 2018, 10, 11818–11825. [36] a) S. Srinivasan and G. B. Schuster, "A conjoined thienopyrrole oligomer formed by using DNA as a molecular guide" Org. Lett. 2008, 10, 3657–3660; b) M. G. Hoesl, S. Oehm, P. Durkin, E. Darmon, L. Peil, H. R. Aerni, J. Rappsilber, J. Rinehart, D. Leach, D. Scll and N. Budisa, "Chemical evolution of a bacterial proteome" Angew. Chem. Int. Ed. 2015, 54, 10030–10034; c) C. Jones, D. Boudinet, Y. Xia, M. Denti, A. Das, A. Facchetti and T. G. Driver, "Synthesis and properties of semiconducting bispyrrolothiophenesfor organic field-effect transistors" Chem. Eur. J. 2014, 20, 5938–5945; d) Y. K. Eom, S. H. Kang, I. T. Choi, Y. Yoo, J. Kim, H. K. Kim, "Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dye sensitized and tandem solar cells" J. Mater. Chem. A 2017, 5, 2297–2308. [37] a) D. A. Skoog, F. J. Holler and S. R. Crouch. Principles of instrumental analysis, 6th ed. Brooks/Cole, Cengage Learning, 2007; b) D. L. Pavia, G. M. Lampman, G. S. Kriz and J. R. Vyvyan, Introduction to spectroscopy, 5th ed. Brooks/Cole, Cengage Learning, 2015. [38] a) B. L. Hayes, "Recent advances in microwave assisted synthesis" Aldricchim. Aceta. 2004, 17, 65–76; b) ""; c) "CEM聚焦微波化學反應系統-中/英文操作及維護手冊" [39] a) Q. Wang, J. E. Moser, and M. Grätzel, "Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells" J. Phys. Chem. B 2005, 109, 14945–14953; b) C. Longo, A. F. Nogueira, and M. A. De Paoli, "Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy" J. Phys. Chem. B 2002, 106, 5925–5930. [40] T. W. Brockmann and J. M. Tour, "Synthesis and properties of low-bandgap zwitterionic and planar conjugated pyrrole-derived polymeric sensors: reversible optical absorption maxima from the UV to the near-IR" J. Am. Chem. Soc. 1995, 117, 4438–4447. [41] K. Masanori, S. Kazuo, S. Yutaka and M. Toshihiko, "Reactions of allyltin compounds III: allylation of aromatic halides with allyltributyltin in the presence of tetrakis(triphenylphosphine)palladium(0)" Chemistry Letters, 1977, 301–302. [42] H. Q. Nguyen, E. A. Rainbolt, P. Sista, M. C. Stefan, "Synthesis and polymerization of fused-ring thienodipyrrole monomers" Macromol. Chem. Phys. 2012, 213, 425–430. [43] L. He, S. U. Riveros, P. J. Gates, C. Nather, M. Brinkmann, V. Abetz and A. Staubitz, "Synthesis of poly(thiophene-alt-pyrrole) from a difunctionalized thienylpyrrole by Kumada polycondensation" Tetrahedron, 2015, 71, 5399–5406. [44] a) M. Baloch, D. Roy, S. Bensaid, V. Guerchais and H. Doucet, "Sequential palladium-catalysed direct arylation followed by Suzuki coupling of bromo-2-chloropyridines: simple access to a variety of 2-arylpyridines" Eur. J. Inorg. Chem. 2012, 4454–4462; b) E. T. Nadres, A. Lazareva and O. Daugulis, "Palladium-catalyzed indole, pyrrole, and furan arylation by aryl chlorides" J. Org. Chem. 2011, 76, 471–483. [45] A. Bedi, S. P. Senanayak, K. S. Narayan and S. S. Zade, "Synthesis and characterization of copolymers based on cyclopenta[c]thiophene and bithiazole and their transistor properties" J. Polym. Sci. A Polym. Chem. 2013, 57, 4481–4488. [46] S. K. Mehta, S. Kumar, S. Chaudhary and K. K. Bhasin, "Nucleation and growth of surfactant-passivated CdS and HgS nanoparticles: Time-dependent absorption and luminescence profiles" Nanoscale 2010, 2, 145–152. [47] L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, L. Hsieh, S. H. Liu, H. W. Lin, C. C. Wu, S. H. Chou, S. H. Chen and A. I. Tsai, "Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells" J. Org. Chem. 2010, 75, 4778–4785; b) T. Dentani, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, H. Minoura, H. Miurad and M. Matsui, "Novel thiophene-conjugated indoline dyes for zinc oxide solar cells" New J. Chem. 2009, 33, 93–101. [48] a) W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z. Wang and H. Tian, "Organic D-A-π-A solar cell sensitizers with improved stability and spectral response" Adv. Funct. Mater. 2011, 21, 756–763; b) M. Kasha, "Energy transfer mechanisms and the molecular exciton model for molecular aggregates" Radiat. Res. 1963, 20, 55–71. [49] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, S. I. Goreslky, A. B. P. Lever and M. Grätzel, "Copolymerization of polar monomers with olefins using transition-metal complexes" Chem. Rev. 2000, 100, 1479–1493. [50] H. Rensmo, S. So¨dergren, L. Patthey, K. Westmark, L. Vayssieres, O. Khole, P. A. Bru¨hwiler, A. Hagfeldt and H. Siegbahn, "The electronic structure of the cis-bis(4,4'-dicarboxy-2,2'-bipyridine)-bis(isothiocyanato) ruthenium(II) complex and its ligand 2,2'-bipyridyl-4,4'-dicarboxylic acid studied with electron spectroscopy" Chem. Phys. Lett. 1997, 274, 51–57. [51] C. Daul, E. J. Baerends and P. Vernooijs, "A density functional study of the MLCT states of [Ru(bpy)3]2+ in D3 symmetry" Inorg. Chem. 1994, 33, 3538–3553. [52] J. E. Monat, J. H. Rodriguez and J. K. McCusker, "Ground- and excited-state electronic structures of the solar cell sensitizer bis(4,4'-dicarboxylato-2,2'-bipyridine)bis(isothiocyanato)ruthenium(II)" J. Phys. Chem. A 2002, 106, 7399–7406. [53] C. H. Chen, Y. C. Hsu, H. H. Chou, K. R. Thomas, J. T. Lin and C. P. Hsu, "Dipolar compounds containing fluorene and a heteroaromatic ring as the conjugating bridge for high-performance dye-sensitized solar cells" Chem. Eur. J. 2010, 16, 3184–3193. [54] V. V. Pavlishchuk and A. W. Addison, "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 oC" Inorg. Chim. Acta. 2000, 298, 97–102. [55] a) R. Katoh, M. Kasuya, S. Kodate, A. Furube, N. Fuke and N. Koide, "Effects of 4-tert-butylpyridine and Li ions on photoinduced electron injection efficiency in black-dye-sensitized nanocrystalline TiO2 films" J. Phys. Chem. C. 2009, 113, 20738–20744; b) A. Mathewa, V. Ananda, G. M. Raoa, N. Munichandraiah, "Effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells for various I2/LiI ratios" Electrochim. Acta, 2013, 87, 92–96. [56] K. Haraa, T. Nishikawab, M. Kurashigea, H. Kawauchic, T. Kashimac, K. Sayamaa, K. Aikab and H. Arakawa "Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru (II) terpyridyl complex photosensitizer" Sol. Energy Mater. Sol. Cells 2005, 85, 21–30. [57] Y. Shiac, Y. Wang, M. Zhang and X. Dong, "Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium" Phys. Chem. Chem. Phys. 2011, 13, 14590–14597. [58] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): the case of solar cells using the I-/I3- redox couple" J. Phys. Chem. B. 2005, 109, 3480–3487. [59] C. Zhang, Y Huang, Z. Huo, S. Chen and S. Dai, "Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability" J. Phys. Chem. C. 2009, 773, 21779–21783. [60] a) L. Xie, A. N. Cho, N. G. Park and K. Kim, "Efficient and reproducible CH3NH3PbI3 perovskite layer prepared using a binary solvent containing a cyclic urea additive" ACS Appl. Mater. Interfaces 2018, 10, 9390−9397; b) L. J. A. Koster, V. D. Mihailetchi, H. Xie and P. W. M. Blom, "Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells" Appl. Phys. Lett. 2005, 87, 203502−203505. [61] a) M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. D. Boer and P. W. M. Blom " Effect of traps on the performance of bulk heterojunction organic solar cells" Appl. Phys. Lett. 2007, 91, 263505−263508; b) M. M. Mandoc, W. Veurman, L. J. A. Koster, B. D. Boer and P. W. M. Blom, " Origin of the reduced fill factor and photocurrent in MDMO-PPV:PCNEPV all-polymer solar cells" Adv. Funct. Mater. 2007, 17, 2167–2173; c) L. J. A. Koster, V. D. Mihailetchi, R. Ramaker and P. W. M. Blom, "Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells" Appl. Phys. Lett. 2005, 86, 123509−123512. [62] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, "Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays" Nano Lett. 2007, 7, 69–74. [63] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, "Dynamic Response of Dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy" J. Phys. Chem. B. 1997, 101, 10281–10289. [64] J. Villanueva-Cab, J. A. Antab and G. Oskam, "The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes" Phys. Chem. Chem. Phys. 2016, 18, 2303–2308.
|