跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮祐銘
研究生(外文):Yu-Ming Feng
論文名稱:新型三吡啶釕錯合物光敏化染料的合成與性質探討
指導教授:陳家原
指導教授(外文):Chia-Yuan Chen
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:217
中文關鍵詞:染料敏化太陽能電池釕錯合物三吡啶
外文關鍵詞:dye-sensitized solar cellsruthenium complexesTerpyridine
相關次數:
  • 被引用被引用:2
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光敏化染料為染料敏化太陽能電池(Dye-sensitized Solar Cells (DSCs))的核心組成,亦為影響元件光電轉換效能與穩定性之重要關鍵;在眾多光敏化劑中,釕錯合物染料的MLCT (Metal-to-Ligand Charge Transfer)特性具有可使其敏化之元件有效吸收可見光與部份近紅外光等優點,有機會更進一步提高元件的光電流密度與光電轉換效率,因此本研究選擇以含有三吡啶(Terpyridine)固著配位基Black dye (N749)為基礎,設計合成出CYC-36 與 CYC-41兩個新型釕錯合物染料,其設計概念主要是在該固著配位基的吡啶4號位上分別以Pyrrole和首次應用在太陽能領域的Thieno[3,2-b]pyrrole單元取代原先的羧酸基,希望可藉此提高釕錯合物光敏化染料的吸光能力與元件效能。其中CYC-41的MLCT最大吸收波長(max)不僅可紅位移至615 nm (優於Black dye的599 nm),吸收係數(8800 M-1 cm-1)亦優於Black dye (7500 M-1 cm-1);搭配碘電解質時,元件的IPCE結果顯示兩新型染料相較於Black dye確實可有效提高電池在波長400到500 nm以及800到900 nm的轉換效能;在TiO2光電極厚度為45 µm與AM 1.5G模擬太陽光照射條件下,CYC-36所敏化之電池元件短路電流密度(Jsc)達17.34 mA cm-2 (優於Black dye的17.13 mA cm-2),元件光電轉換效率為8.00% (相同條件下Black dye元件為8.93%),另一方面,CYC-41在搭配TiO2光電極厚度為25 µm條件下,所敏化之電池元件亦較Black dye有較高的Jsc (17.62 mA cm-2 vs. 17.54 mA cm-2),整體效能達7.82% (相同條件下Black dye元件為8.88%)。除合成兩新型釕錯合物染料外,本研究亦系統性地比較上述三個染料與先前本實驗室開發之CYC-37和CYC-39的光物理與電化學性質以及元件特性,以期能為後續設計高效率釕錯合物染料提供更明確的指引。
In dye-sensitized solar cells (DSCs), photosensitizer is the most important component affecting significantly power conversion efficiency (PCE) and stability of the devices. Among numerous photosensitizers, ruthenium (Ru) complexes sensitizers are very promising to enhance further the performance of devices, due to their metal–ligand charge transfer (MLCT) transition that extends into the red and near-infrared region. In this research, we designed and synthesized two new ruthenium complexes, coded CYC-36 and CYC-41, respectively. Our designing concept is based on Black dye (N749) which contains a terpyridine anchoring ligand. We replaced one carboxyl group at the fourth position of terpyridine ligand with pyrrole and thieno[3,2‑b]pyrrole, respectively. The maximum absorption wavelength (max) of CYC-41 is 615 nm red-shifted over 15 nm than that of Black dye. The molar absorption coefficient of CYC-41 (8800 M-1 cm-1) is also higher than of Black dye (7500 M-1 cm-1). IPCE results show the devices sensitized with CYC-36 and CYC-41 in conjunction with an iodide-based electrolyte can convert more blue and red light photons into electricity than that of Black dye. Moreover, when the thickness of TiO2 is fune-tuned to 45 µm and 25 µm, the Jsc of devices based on CYC-36 and CYC-41 reaches 17.34 mA cm-2 and 17.64 mA cm-2, yielding respectively the PCE of 8.00% and 7.82%. Under the same conditions, the performance of Black dye-based cell is 8.93% and 8.88%, respectively. In addition to the design of two new dyes, we compared systematically the properties and the device characteristics for the three dyes as well as CYC-37 and CYC-39 we developed previously to provide more clues of designing highly efficient ruthenium photosensitizers.
中文摘要 I
Abstract II
謝誌 III
目錄 IV
圖目錄 VI
表目錄 XII
附錄目錄 XIV
第一章 緒論 1
1-1前言 1
1-2太陽光譜與太陽能電池的光伏參數 1
1-3太陽能電池的發展歷史簡介 5
1-4染料敏化太陽能電池的工作原理 7
1-5染料分子設計相關文獻探討 9
1-5-1釕錯合物之結構設計 12
1-5-2含吡咯單元之染料 30
1-6研究動機 38
第二章 實驗部分 40
2-1實驗藥品 40
2-2中間產物之結構與簡稱 43
2-3合成流程及實驗 47
2-3-1在四號位置溴基取代之三牙酯基的合成 47
2-3-2 Ligand-36-ester之合成 53
2-3-3 Ligand-41-ester之合成 57
2-3-4 釕錯合物CYC-36之合成 64
2-3-5 釕錯合物CYC-41之合成 68
2-4 儀器分析與樣品製備 72
2-5 元件組裝與光電轉換效率量測 80
2-5-1 DSCs元件組裝流程 80
2-5-2 DSCs光電轉換效率量測系統 83
第三章 結果與討論 88
3-1 合成相關探討 88
3-1-1 三牙配位基Ligand-36-ester合成所遇到之問題與解決方法 88
3-1-2 三牙配位基Ligand-41-ester之合成探討 101
3-1-3 CYC-36與CYC-41純化方式探討 103
3-2 釕錯合物染料結構鑑定與光物理性質探討 108
3-2-1 CYC-36與CYC-41染料結構鑑定 108
3-2-2 釕錯合物光物理性質探討 113
3-3 釕錯合物分子軌域理論計算結果 122
3-4 釕錯合物電化學性質與前置軌域位能計算 127
3-5 釕錯合物染料敏化電池的元件性能探討 132
第四章 結論 151
參考文獻 153
附錄 165
[1] M. Freitag, J. Teuscher, Y. Saygili, X. Zhang, F. Giordano, P. Liska, J. Hua, S. M. Zakeeruddin, J. E. Moser, M. Grätzel and A. Hagfeldt, "Dye-sensitized solar cells for efficient power generation under ambient lighting" Nat. Photon. 2017, 11, 372–378.
[2] a) "http: // www. pveducation. org / pvcdrom / appendices / standard -solar- spectra"; b) "http: // www. laserfbcusworld. com / articles / 2009 / 05 / photovoltaics– measuring– the- sun. html".
[3] "https://www.pveducation.org/pvcdrom/solar-cell-operation/impact-of-both-series-and-shunt-resistance".
[4] E. Becquerel, "Mémoire sur les effets électriques produits sous l'influence des rayons solaires" C. R. Acad. Sci. 1839, 9, 561–567.
[5] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan and G. Luo, "Electrolytes in dye-sensitized solar cells" Chem. Rev. 2015, 115, 2136–2173.
[6] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. H. Ebinger, M. Yoshita, A. W. Y. H. Baillie, "Solar cell efficiency tables (version 53)" Prog. Photovolt. Res. Appl. 2019, 27, 3–12.
[7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell" Nature 1976, 261, 402–403.
[8] B. Regan and M. Grätzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature 1991, 353, 737–740.
[9] J. Wu, Z. Lan, J. Lin, M. Huang and Y. Huang, "Counter electrodes in dye-sensitized solar cells" Chem. Soc. Rev. 2017, 46, 5975–6023.
[10] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, "Dye-sensitized solar cells" Chem. Rev. 2010, 110, 6595–6663.
[11] S. Yun, P. D. Lund and A. Hinsch, "Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells" Energy Environ. Sci. 2015, 8, 3495–3514.
[12] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes" Chem. Commun. 2015, 51, 15894–15897.
[13] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Grätzel, C. G. Wu and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells" ACS Nano 2009, 3, 3103–3109.
[14] S. Mathew, A. Yelia, P. Gao, R. H. Baker, B. F. Curchod, N. A. Astani, I. Tavemelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers" Nat. Chem. 2014, 6, 242–247.
[15] M. K. Nazeeruddin, I. R. A. Kay, R. H. Baker, P. L. E. Mueller, N. Vlachopoulos and M. Grätzel, "Conversion of light to electricity by cis-X2bis (2,2-bipyridyl-4,4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes" J. Am. Chem. Soc. 1993, 115, 6382–6390.
[16] a) M. K. Nazeeruddin, R. H. Baker, P. Liska, and M. Grätzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell" J. Phys. Chem. B 2003, 707, 8981–8987; b) M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photo-electrochemical cell ruthenium sensitizers" J. Am. Chem. Soc. 2005, 727, 16835–16847.
[17] M. K. Nazeeruddin, T. R. P. Pechy, S. M. Zakeeruddin, R. H. Baker, P. Comte, L. C. P. Liska, E. Costa, V. Shklover, G. B. D. L. Spiccia, C. A. Bignozzi and M. Grätzel, "Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells" J. Am. Chem. Soc. 2001, 123, 1613–1624.
[18] a) C. C. Chou, K. L. Wu, Y. Chi, W. P. Hu, S. J. Yu, G. H. Lee, C. L. Lin and P. T. Chou, "Ruthenium (II) sensitizers with heteroleptic tridentate chelates for dye-sensitized solar cells" Angew. Chem. Int. Ed. 2011, 50, 2054–2058; b) C. W. Hsu, S. T. Ho, K. L. Wu, Y. Chi, S. H. Liu, and P. T. Chou, "Ru (II) sensitizers with a tridentate heterocyclic cyclometalate for dye-sensitized solar cells" Energy. Environ. Sci. 2012, 5, 7549–7554.
[19] S. H. Yang, K. L. Wu, Y. Chi, Y. M. Cheng and P. T. Chou, "Tris (thiocyanate) ruthenium (II) sensitizers with functionalized dicarboxyterpyridine for dye-sensitized solar cells" Angew. Chem. Int. Ed. 2011, 50, 8270–8274.
[20] H. W. Lin, Y.-S. Wang, Z. Y. Huang, Y. M. Lin, C. W. Chen, S. H. Yang, K. L. Wu, Y. Chi, S. H. Liu and P. T. Chou, "Origins of device performance in dicarboxyterpyridine Ru (II) dye-sensitized solar cells" Phys. Chem. Chem. Phy. 2012, 14, 14190–1495.
[21] M. Kimura, J. Masuo, Y. Tohata, K. Obuchi, N. Masaki, T. N. Murakami, N. Koumura, K. Hara, A. Fukui, R. Yamanaka and S. Mori, "Improvement of TiO2/dye/electrolyte interface conditions by positional change of alkyl chains in modified panchromatic Ru complex dyes" Chem. Eur. J. 2013, 19, 1028–1034.
[22] L. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S. Zhang, X. Yang and M. Yanagida, "High-efficiency dye-sensitized solar cell with a novel co-adsorbent" Energy. Environ. Sci. 2012, 5, 6057–6060.
[23] Y. Numata, S, P. Singh, A. Islam, M. Iwamura, A. Imai, K. Nozaki and L. Han, "Enhanced light-harvesting capability of a panchromatic Ru (II) sensitizer based on π-extended terpyridine with a 4-methylstyryl group for dye-sensitized solar cells" Adv. Funct. Mater. 2013, 23, 1817–1823.
[24] H. Ozawa, T. Kuroda, S. Harada and H. Arakawa, "Efficient ruthenium sensitizer with a terpyridine ligand having a hexylthiophene unit for dye-sensitized solar cells: Effects of the substituent position on the solar cell performance" Eur. J. Inorg. Chem. 2014, 2014, 4734–4739.
[25] H. Ozawa, K. Fukushima. A. Urayama and H. Arakawa, "Efficient ruthenium sensitizer with an extended pi-conjugated terpyridine ligand for dye-sensitized solar cells" Inorg. Chem. 2015, 54, 8887–8889.
[26] H. Ozawa, Y. Tawaraya and H. Arakawa, "Effects of the alkyl chain length of imidazoliumiodide in the electrolyte solution on the performance of black-dye-based dye-sensitized solar cells" Electrochim. Acta. 2015, 151, 447–452.
[27] H. Ozawa, T. Sugiura, T. Kuroda, K, Nozawa and H. Arakawa, "Highly efficient dye-sensitized solar cells based on a ruthenium sensitizer bearing a hexylthiophene modified terpyridine ligand" J. Mater. Chem. A, 2016, 4, 1762–1770.
[28] F. Sauvage, J. D. Decoppet, M. Zhang, S. M. Zakeeruddin, P. Comte, M. Nazeeruddin, P. Wang and M. Grätzel, "Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells" J. Am. Chem. Soc. 2011, 133, 9304–9310.
[29] M. Beley and P. C. Gros, "Ruthenium polypyridine complexes bearing pyrroles and π-extended analogues: synthesis, spectroelectronic, electrochemical, and photovoltaic properties" Organometallics, 2014, 33, 4590–4606.
[30] J. D. Chai and M. H. Gordon, "Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections" Phys. Chem. Chem. Phys. 2008, 10, 6615–6620.
[31] M. Liangwab and J. Chen, "Arylamine organic dyes for dye-sensitized solar cells" Chem. Soc. Rev. 2013, 42, 3453–3488.
[32] Y. S. Yen, Y. C. Hsu, J. T. Lin, C. W. Chang, C. P. Hsu and D. J. Yin, "Pyrrole-based organic dyes for dye-sensitized solar cells" J. Phys. Chem. C, 2008, 112, 12557–12567.
[33] 劉毓琪,2018,國立中央大學化學研究所論文 (應用於染料敏化太陽能電池之釕金屬錯合物合成與性質探討)。
[34] K. C. Ching, T. N. Q. Tran, S. N. Amrun, Y. W. Kam, L. F. P. Ng and C. L. L. Chai, "Structural optimizations of thieno[3,2-b]pyrrole derivatives for the development of metabolically stable inhibitors of chikungunya virus" J. Med. Chem. 2017, 60, 3165–3186.
[35] C. Bulumulla, R. Gunawardhana, R. N. Kularatne, M. E. Hill, G. T. McCandless, M. C. Biewer and M. C. Stefan, "Thieno[3,2-b]pyrrole-benzothiadiazole banana-shaped small molecules for organic field-effect transistors" ACS Appl. Mater. Interfaces 2018, 10, 11818–11825.
[36] a) S. Srinivasan and G. B. Schuster, "A conjoined thienopyrrole oligomer formed by using DNA as a molecular guide" Org. Lett. 2008, 10, 3657–3660; b) M. G. Hoesl, S. Oehm, P. Durkin, E. Darmon, L. Peil, H. R. Aerni, J. Rappsilber, J. Rinehart, D. Leach, D. Scll and N. Budisa, "Chemical evolution of a bacterial proteome" Angew. Chem. Int. Ed. 2015, 54, 10030–10034; c) C. Jones, D. Boudinet, Y. Xia, M. Denti, A. Das, A. Facchetti and T. G. Driver, "Synthesis and properties of semiconducting bispyrrolothiophenesfor organic field-effect transistors" Chem. Eur. J. 2014, 20, 5938–5945; d) Y. K. Eom, S. H. Kang, I. T. Choi, Y. Yoo, J. Kim, H. K. Kim, "Significant light absorption enhancement by a single heterocyclic unit change in the π-bridge moiety from thieno[3,2-b]benzothiophene to thieno[3,2-b]indole for high performance dye sensitized and tandem solar cells" J. Mater. Chem. A 2017, 5, 2297–2308.
[37] a) D. A. Skoog, F. J. Holler and S. R. Crouch. Principles of instrumental analysis, 6th ed. Brooks/Cole, Cengage Learning, 2007; b) D. L. Pavia, G. M. Lampman, G. S. Kriz and J. R. Vyvyan, Introduction to spectroscopy, 5th ed. Brooks/Cole, Cengage Learning, 2015.
[38] a) B. L. Hayes, "Recent advances in microwave assisted synthesis" Aldricchim. Aceta. 2004, 17, 65–76; b) ""; c) "CEM聚焦微波化學反應系統-中/英文操作及維護手冊"
[39] a) Q. Wang, J. E. Moser, and M. Grätzel, "Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells" J. Phys. Chem. B 2005, 109, 14945–14953; b) C. Longo, A. F. Nogueira, and M. A. De Paoli, "Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy" J. Phys. Chem. B 2002, 106, 5925–5930.
[40] T. W. Brockmann and J. M. Tour, "Synthesis and properties of low-bandgap zwitterionic and planar conjugated pyrrole-derived polymeric sensors: reversible optical absorption maxima from the UV to the near-IR" J. Am. Chem. Soc. 1995, 117, 4438–4447.
[41] K. Masanori, S. Kazuo, S. Yutaka and M. Toshihiko, "Reactions of allyltin compounds III: allylation of aromatic halides with allyltributyltin in the presence of tetrakis(triphenylphosphine)palladium(0)" Chemistry Letters, 1977, 301–302.
[42] H. Q. Nguyen, E. A. Rainbolt, P. Sista, M. C. Stefan, "Synthesis and polymerization of fused-ring thienodipyrrole monomers" Macromol. Chem. Phys. 2012, 213, 425–430.
[43] L. He, S. U. Riveros, P. J. Gates, C. Nather, M. Brinkmann, V. Abetz and A. Staubitz, "Synthesis of poly(thiophene-alt-pyrrole) from a difunctionalized thienylpyrrole by Kumada polycondensation" Tetrahedron, 2015, 71, 5399–5406.
[44] a) M. Baloch, D. Roy, S. Bensaid, V. Guerchais and H. Doucet, "Sequential palladium-catalysed direct arylation followed by Suzuki coupling of bromo-2-chloropyridines: simple access to a variety of 2-arylpyridines" Eur. J. Inorg. Chem. 2012, 4454–4462; b) E. T. Nadres, A. Lazareva and O. Daugulis, "Palladium-catalyzed indole, pyrrole, and furan arylation by aryl chlorides" J. Org. Chem. 2011, 76, 471–483.
[45] A. Bedi, S. P. Senanayak, K. S. Narayan and S. S. Zade, "Synthesis and characterization of copolymers based on cyclopenta[c]thiophene and bithiazole and their transistor properties" J. Polym. Sci. A Polym. Chem. 2013, 57, 4481–4488.
[46] S. K. Mehta, S. Kumar, S. Chaudhary and K. K. Bhasin, "Nucleation and growth of surfactant-passivated CdS and HgS nanoparticles: Time-dependent absorption and luminescence profiles" Nanoscale 2010, 2, 145–152.
[47] L. Y. Lin, C. H. Tsai, K. T. Wong, T. W. Huang, L. Hsieh, S. H. Liu, H. W. Lin, C. C. Wu, S. H. Chou, S. H. Chen and A. I. Tsai, "Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells" J. Org. Chem. 2010, 75, 4778–4785; b) T. Dentani, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, H. Minoura, H. Miurad and M. Matsui, "Novel thiophene-conjugated indoline dyes for zinc oxide solar cells" New J. Chem. 2009, 33, 93–101.
[48] a) W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z. Wang and H. Tian, "Organic D-A-π-A solar cell sensitizers with improved stability and spectral response" Adv. Funct. Mater. 2011, 21, 756–763; b) M. Kasha, "Energy transfer mechanisms and the molecular exciton model for molecular aggregates" Radiat. Res. 1963, 20, 55–71.
[49] M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, S. I. Goreslky, A. B. P. Lever and M. Grätzel, "Copolymerization of polar monomers with olefins using transition-metal complexes" Chem. Rev. 2000, 100, 1479–1493.
[50] H. Rensmo, S. So¨dergren, L. Patthey, K. Westmark, L. Vayssieres, O. Khole, P. A. Bru¨hwiler, A. Hagfeldt and H. Siegbahn, "The electronic structure of the cis-bis(4,4'-dicarboxy-2,2'-bipyridine)-bis(isothiocyanato) ruthenium(II) complex and its ligand 2,2'-bipyridyl-4,4'-dicarboxylic acid studied with electron spectroscopy" Chem. Phys. Lett. 1997, 274, 51–57.
[51] C. Daul, E. J. Baerends and P. Vernooijs, "A density functional study of the MLCT states of [Ru(bpy)3]2+ in D3 symmetry" Inorg. Chem. 1994, 33, 3538–3553.
[52] J. E. Monat, J. H. Rodriguez and J. K. McCusker, "Ground- and excited-state electronic structures of the solar cell sensitizer bis(4,4'-dicarboxylato-2,2'-bipyridine)bis(isothiocyanato)ruthenium(II)" J. Phys. Chem. A 2002, 106, 7399–7406.
[53] C. H. Chen, Y. C. Hsu, H. H. Chou, K. R. Thomas, J. T. Lin and C. P. Hsu, "Dipolar compounds containing fluorene and a heteroaromatic ring as the conjugating bridge for high-performance dye-sensitized solar cells" Chem. Eur. J. 2010, 16, 3184–3193.
[54] V. V. Pavlishchuk and A. W. Addison, "Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25 oC" Inorg. Chim. Acta. 2000, 298, 97–102.
[55] a) R. Katoh, M. Kasuya, S. Kodate, A. Furube, N. Fuke and N. Koide, "Effects of 4-tert-butylpyridine and Li ions on photoinduced electron injection efficiency in black-dye-sensitized nanocrystalline TiO2 films" J. Phys. Chem. C. 2009, 113, 20738–20744; b) A. Mathewa, V. Ananda, G. M. Raoa, N. Munichandraiah, "Effect of iodine concentration on the photovoltaic properties of dye sensitized solar cells for various I2/LiI ratios" Electrochim. Acta, 2013, 87, 92–96.
[56] K. Haraa, T. Nishikawab, M. Kurashigea, H. Kawauchic, T. Kashimac, K. Sayamaa, K. Aikab and H. Arakawa "Influence of electrolyte on the photovoltaic performance of a dye-sensitized TiO2 solar cell based on a Ru (II) terpyridyl complex photosensitizer" Sol. Energy Mater. Sol. Cells 2005, 85, 21–30.
[57] Y. Shiac, Y. Wang, M. Zhang and X. Dong, "Influences of cation charge density on the photovoltaic performance of dye-sensitized solar cells: lithium, sodium, potassium, and dimethylimidazolium" Phys. Chem. Chem. Phys. 2011, 13, 14590–14597.
[58] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada and S. Yanagida, "Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): the case of solar cells using the I-/I3- redox couple" J. Phys. Chem. B. 2005, 109, 3480–3487.
[59] C. Zhang, Y Huang, Z. Huo, S. Chen and S. Dai, "Photoelectrochemical effects of guanidinium thiocyanate on dye-sensitized solar cell performance and stability" J. Phys. Chem. C. 2009, 773, 21779–21783.
[60] a) L. Xie, A. N. Cho, N. G. Park and K. Kim, "Efficient and reproducible CH3NH3PbI3 perovskite layer prepared using a binary solvent containing a cyclic urea additive" ACS Appl. Mater. Interfaces 2018, 10, 9390−9397; b) L. J. A. Koster, V. D. Mihailetchi, H. Xie and P. W. M. Blom, "Origin of the light intensity dependence of the short-circuit current of polymer/fullerene solar cells" Appl. Phys. Lett. 2005, 87, 203502−203505.
[61] a) M. M. Mandoc, F. B. Kooistra, J. C. Hummelen, B. D. Boer and P. W. M. Blom " Effect of traps on the performance of bulk heterojunction organic solar cells" Appl. Phys. Lett. 2007, 91, 263505−263508; b) M. M. Mandoc, W. Veurman, L. J. A. Koster, B. D. Boer and P. W. M. Blom, " Origin of the reduced fill factor and photocurrent in MDMO-PPV:PCNEPV all-polymer solar cells" Adv. Funct. Mater. 2007, 17, 2167–2173; c) L. J. A. Koster, V. D. Mihailetchi, R. Ramaker and P. W. M. Blom, "Light intensity dependence of open-circuit voltage of polymer:fullerene solar cells" Appl. Phys. Lett. 2005, 86, 123509−123512.
[62] K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, "Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays" Nano Lett. 2007, 7, 69–74.
[63] L. Dloczik, O. Ileperuma, I. Lauermann, L. M. Peter, E. A. Ponomarev, G. Redmond, N. J. Shaw and I. Uhlendorf, "Dynamic Response of Dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy" J. Phys. Chem. B. 1997, 101, 10281–10289.
[64] J. Villanueva-Cab, J. A. Antab and G. Oskam, "The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes" Phys. Chem. Chem. Phys. 2016, 18, 2303–2308.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊