(3.231.229.89) 您好!臺灣時間:2019/12/15 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:馮雅茜
研究生(外文):Ya-Chien Feng
論文名稱:台灣北部初秋豪雨個案之降雨特性研究
論文名稱(外文):The precipitation characteristics of autumn torrential rainfall event in northern Taiwan.
指導教授:廖宇慶, 陳台琦
學位類別:碩士
校院名稱:國立中央大學
系所名稱:大氣物理研究所
學門:自然科學學門
學類:大氣科學學類
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:豪雨雙偏極化雷達
外文關鍵詞:dual-polarimetric radartorrential rain
相關次數:
  • 被引用被引用:1
  • 點閱點閱:203
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要探討2006年9月10日北台灣初秋豪雨個案之降雨特性,當日最大累積雨量為竹子湖測站的556 mm/day(已達超大豪雨),降雨主要集中在06-12 UTC。研究中利用中央大學雙偏極化雷達和五分山雷達進行中尺度分析,討論降雨之時空分布特徵、可能機制與微物理特性。
綜觀天氣主要受到大陸性高壓與台灣南方外海之低壓產生的共伴環流所影響,大陸性高壓出海與高層轉為西風,屬於初秋的氣候特性。
中尺度水平方向的雷達回波具有多種樣貌,系統自東向西移動,並由南北走向聚集後轉為東西走向。統計結果顯示強回波主要集中於三區:台灣東北部外海、大屯山區以及淡水河口附近,此三區皆存在有利的環境因子,分別為:綜觀環境高、低壓的風場輻合,地形上坡增強,穿過台北盆地之東風與環境東北風的輻合。
雙偏極化雷達顯示降水系統主要由層狀和發展不深的對流組成,而這些淺對流被嵌於層狀系統之間,利用雙偏極化雷達反演雨滴粒徑再配合風場資訊整理出一個雲物理的概念模式,長時間存在的層狀區持續提供融解後的水滴給低層,地形迎風坡或對流區有較大的上升速度,利於凝結使得小雨滴個數增多,可能有類似種雲餵雲的加強機制,且大ZDR集中在低層,降水可能以碰撞結合為主。
Precipitation characteristics of the torrential rainfall event on 10th Sep. 2006 in northern Taiwan will be discussed in this thesis. The maximum daily accumulated rainfall was 556 mm at Zhuzihu. The heavist rainfall took place during 06-12UTC. The data collected by NCU dual-polarimetric radar and RCWF radar are mainly used to analyze mesoscale features, such as space-time distribution of precipitation, possible mechanisms, as well as microphysics characteristics.
In synoptic scale, a continental high in China and a low locating on Bashi Channel influenced Taiwan. They caused a low level convergent zone in the north-eastern area of Taiwan. Because the continental high moved out of China and it turned to westerly on high level, the climate character was categorized to early autumn.
The horizontal reflectivity patterns were diverse. Convections moved from east to west. Statistic result shows that the strong reflectivity dispersed to three areas, northeastern sea of Taiwan, Mt. Datun and Tamsui River estuary. The environment provided favorable conditions for these precipitation systems, such as convergence and terrain upslope enhancement.
From dual-polarization data, shallow convections were embedded in large and long-lasting stratiform system. ZDR was increasing as height decreasing. Within near saturated environment, the bigger drops in lower level indicated that precipitation may be enhanced by collision and coalescence. Using dual-polarization radar data to retrieve raindrop size distribution, and combing kinematics analysis, we could prescribe a simple microphysics conceptual model. The long-lasting stratiform system continuously provided droplets to low level convections in a wide spread region. Wherever there is more upward motion, more vapor would condense. A wider spread of DSD set up the stage of seeder-feeder mechanism.
中文摘要 ……………………………………………… I
英文摘要 ……………………………………………… II
目錄 ……………………………………………… III
圖表說明 ……………………………………………… V

第一章 緒論
1-1 研究動機……………………………………………… 1
1-2 文獻回顧……………………………………………… 1
1-3 研究目的……………………………………………… 4

第二章 資料來源與分析方法
2-1 資料來源……………………………………………… 5
2-1-1五分山都卜勒雷達 …………………………… 5
2-1-2 中央大學雙偏極化雷達……………………… 5
2-2 雷達資料分析方法…………………………………… 7
2-2-1 風場合成……………………………………… 7
2-2-2雙偏極化雷達資料處理流程 ………………… 8
2-2-3 水象粒子分類方法…………………………… 9
2-2-4 反演雨滴粒徑分布……………………………10

第三章 個案簡介
3-1 雨量時空分布…………………………………………13
3-2 綜觀環境特徵…………………………………………14
3-2-1 地面及高空天氣圖分析………………………14
3-2-2 探空資料分析…………………………………16

第四章 中尺度降水特徵
4-1 回波系統隨綜觀天氣之變化…………………………18
4-2 中尺度水平結構特徵…………………………………19
4-3 強回波的統計分析……………………………………20
4-3-1 Hovemöller diagram ………………………20
4-3-2 強回波的時空分布……………………………21
4-3-3 ZDR的時空配置 …………………………… 23
4-4 強回波空間分布的可能原因 ……………………… 23
4-5 回波之型態特徵………………………………………25

第五章 雲物理特性討論
5-1 中尺度垂直結構特性…………………………………27
5-2 層狀區─融解層特性…………………………………28
5-3 發展不深的淺對流……………………………………29
5-4 CFAD分析………………………………………………30
5-5 層狀區和淺對流的交互作用…………………………31

第六章 結論與未來展望
6-1 結論……………………………………………………34
6-2 未來展望………………………………………………35

參考文獻 …………………………………………………… 36
附表 …………………………………………………… 42
附圖 …………………………………………………… 46
附錄 …………………………………………………… 88
王時鼎,鄭 俠,1982:台灣天氣之自然季節與冬季反常天氣之研究。大氣科學,9,125-146。
王時鼎,鄭 俠與趙友夔,1984:台灣天氣變化之自然季節。大氣科學,11,101-120。
鄧仁星,1999:侵台颱風降水預報之應用研究-台灣地區雷達資料處理系統之建立與測試,國科會博士後研究結案報告。
陳昭銘與汪鳳如,2000:台灣地區降雨之長期變化特性─秋雨之準二十年震盪。大氣科學,28,343-361。
陳盈曄,2000:宜蘭地區秋冬季降雨特性之研究。國立中央大學大氣物理研究所碩士論文。
劉慈先,2002:SCSMEX 期間利用C-Pol 偏極化雷達氣象參數觀測降水系統之分析, 國立中央大學碩士論文, 67 頁。
張耀升,2003:宜蘭地區豪雨個案之研究。國立中央大學大氣物理研究所博士論文。
沈義欽,2005:北台灣超大豪雨個案之中尺度分析:2004年9月10-11日。國立台灣大學大氣物理研究所碩士論文。
紀博庭,2005:利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究。國立中央大學大氣物理碩士論文,70頁。
呂崇華,2006:雙偏極化雷達資料分析梅雨鋒面雨滴粒徑分佈的物理特性。國立中央大學大氣物理碩士論文,100頁。
鄭凌文,2006:北台灣地形對颱風降水分布及強度之影響:象神颱風雷達觀測研究。私立中國文化大學地學研究所碩士論文,71頁。
Bluestein, H. B., and M. H. Jain, 1985: Formation of mesoscale lines of precipitation : Server squall line in Oklahoma during the spring. J. Atmos. Sci., 42, 1711-1732.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674-685.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003:An evaluation of a drop distribution based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652-660.
Brandes, E. A., and K. Ikeda, 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 1541-1553.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004a: Comparison of polarimetric radar drop size distribution retrieval algorithms. J. Atmos. Oceanic. Technol., 21, 584-598.
Braun, S.A., R.A. Houze, Jr., and M.-J. Yang, 1996: Comments on “The impact of the ice phase and radiation on a midlatitude squall line system.” J. Atmos. Sci., 53, 1343-1351.
Bringi , V. N., V. Chandrasekar, N. Balakrishnan, and D.S. Zrnic, 1990: An Examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829-840.
Bringi , V. N., K. Knupp, A. Detwiler, L. Liu, I. J. Caylor, and R. A. Black, 1997: Evolution of a Florida Thunderstorm during the Convection and Precipitation Electrification Experimenrt:The Case of 9 August 1991. Mon. Wea Rev., 125, 2131-2160.
Bringi, V. N., and V. Chandrasekar 2001: Polarimetric Doppler Weather Radar : Principle and Applications, Cambridge Univ. Press, 636pp.
Bringi, V. N., T. Keenan, and V. Chandrasekar, 2001:Correcting C-Band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 1906–1915.
Bringi, V. N., G. Huang, and V. Chandrasekar, 2002: A methodology for estimating the parameters of a gamma raindrop size distribution model from polarimetric radar data: application to a squall-line event from the TRMM/Brazil compaign. J. Atmos. Oceanic Technol., 19, 633-645.
Bringi, V. N., M. Thurai, and R. Hannesen, 2005: An overview of dual-polarization weather radar: theory and applications. Dual-polarization weather radar handbook, 123pp.
Byers, H. R., and R. R. Braham, Jr. 1949: The Thunderstorm: Report of Thunderstorm Project. U. S Government Printing Office, Washington, D.C, 287pp.
Carbone, R. E., and L. D. Nelson, 1978: The evolution of raindrop spectra in warm-based convective storms as observed and numerically modeled. J. Atmos. Sci., 35, 2302–2314.
Carbone, R. E., B. Foote, M. Moncrieff, T. Gal-Chen, W.Cotton, M. Hjelmfelt, F. Roux, G. Heymsfield, and E. Brandes, 1990b: Convective dynamics: Panel report. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 391-400.
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev. 131, 1323–1341.
Chen, Y.-L., and J. Li, 1995: Large-scale conditions favorable for the development of heavy rainfall during TAMEX IOP3. Mon. Wea. Rev., 123, 2978-3002.
Crook, N. A., and M. W. Moncrieff, 1988: The effect of large-scale convergence on the generation and maintenance of deep moist convection. J. Atmos. Sci., 45, 3606-3624.
Fabry F., I. Zawadzki, and S. Cohn, 1993: The influence of stratiform precipitation on Shallow convective Rain : A case study. Mon. Wea. Rev., 121, 3312-3325.
Fabry, F., and I. Zawadzki, 1995: Long-term observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838–851.
Gorgucci, E., G. Scarchilli, and V. Chandrasekar,1999: A procedure to calibrate multiparameter weather radar using properties of the rain medium, IEEE Trans. Geosci. Remote Sens., 37, 269–276.
Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. N.Bringi, 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57, 3406-3413.
Houghton, H. G., 1968: On precipitation mechanisms and their artificial modification. J. Appl. Meteor., 7, 851–859.
Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.
Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 2179-2196.

Houze, R. A. Jr., S. Medina, and S.E. Yuter, 2001: Orographic precipitation
mechanisms: New data from the Mesoscale Alpine Programme. Proc.
International Conf. On Mesoscale Meteor. And Typhoon in East Asian, NTU Taipei, Taiwan, 88-93.
Illingworth, A. J. and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarimetric radar observations. J. Appl. Meteor., 41, 286-297.
Kingsmill, D. E., and R. A. Houze Jr., 1999: Kinematic characteristics of air flowing into and out of precipitating convection over the west Pacific warm pool. Quart. J. Roy. Meteor. Soc., 125, 1165–1207.
Lavoie, R. L., 1974: A numerical model of trade wind weather on Oahu. Mon. Wea. Rev., 102, 630–637.
Lim, S., V. Chandrasekar, and V. N. Bringi, 2005: Hydrometeor Classification System Using Dual-Polarization Radar Measurements: Model Improvements and In Situ Verification. IEEE Trans. Geosci. Remote Sens., 43, 792-801.
Lin, Y. L.,1993: Orographic effects on airflow and mesoscale weather systems over Taiwan. TAO., 4, 381-420.
Liu, H.P. and V. Chandrasekar, 2000: Classification of hydrometeros based on polarimetric radar measurement: development of fuzzy logic and neuron-fuzzy systems, and in situ verification. J. Atoms. Oceanic Technol., 17, 140-164.
Maddox, R.A., 1983: Large-scale meteorological conditions associated with midlatitude mesoscale convective complex. Mon. Wea. Rev., 111, 1457-1493.
Mapes, B. and R. A. Houze, JR. 1992: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. I: Horizontal structure. Quart. J. Roy. Meteor. Sci., 118, 927-963.
Mapes, B. and R. A. Houze, JR. 1993: An integrated view of the 1987 Australian monsoon and its mesoscale convective systems. II: Vertical structure. Quart. J. Roy. Meteor. Sci., 119, 733-754.
Marshall, J.S. and W. M. Palmer, 1948: The distribution of raindrops with size. J. Metero., 5, 165-166.
May, P. T. and T. D. Keenan, 2003: Four-Dimensional Microphysics data from Darwin. 13th ARM Science Team Meeting Proceedings, Colorado, 7pp.
Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Pergamon Press, 293 pp.
Ryzhdov, A., and D.S. Zrnic, 1996: Assessment of rainfall measurement that uses specific differential phase. J. Appl. Meteor., 35, 2080-2090.
Schär, C. and R. B. Smith, 1993: Shallow-water flow past isolated topography. Part I: Vorticity production and wake formation. J. Atmos. Sci., 50, No.10, 1373-1400.
Scarchilli, G., E. Gorgucci, V. Chandrasekar, and T. A. Seliga, 1993: Rainfall Estimation using polarimetric Techniques at C-Band Frequencies. J. Appl. Meteorol., 32, 1150-1160.
Scarchilli, G., E. Gorgucci, V. Chandrasekar, and A.Dobaie, 1996:Self-Consistency of Polarization Diversity Measurement of Rainfall. IEEE Trans., vol. 34, 22-26.
Seliga, T. A. and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteorol., 15, 69-76.
Simpson, J., N. E. Westcott., R. J. Clerman, and R. A. Pielke, 1980: On cumulus mergers, Arch. Meteor. Geoph. Biokl., Ser. A., 29, 1-40.
Smith, R. B., 1979: The influence of mountains on the atmosphere. Adv. Geophys., 21, 87-230.
Smith, P. L., D. J. Musil, A. G. Detwiller, and R. Ramachandran, 1999: Observations of mixed-phase precipitation within a CaPE thunderstorm. J. Appl. Meteor., 38, 145–155.
Straka, J. M., D.S. Zrnic´, and A.V. Ryzhkov, 2000: Bulk hydrometer classification and quantification using polarimetric radar data: Synthesis and relations. J. Appl. Meteor., 39, 1341-1372.
Stewart, R. E., J. D. Marwitz, J. C. Page, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41, 3227–3237.
Testud, J., S. Qury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “Normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 1118-1140.
Ulbrich, C.W., 1983: National variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764-1775.
Vivekanandan, J., D. S. Zernic, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. straka, 1999: Cloud Microphysics Retrieval Using S-Band Dual-Polarization Radar Measurements. Bull. Amer. Meteor. Soc., 80, 381-388.
Wakimomoto, R.M., and V.N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: the 20 July storm during MIST project. Mon. Wea. Rev., 116, 1521-1539.
Weisman, M. L., and J. B. Klemp, 1982:The dependence of numerically simulated convective storm on wind shear and buoyancy. Mon. Wea. Rev., 110, 504-520.
Westcott, N. E., 1984: A historical perspective on cloud mergers. Bull. Amer. Meteor. Soc., 65, 219-226.
Willis, P. T., 1984: Functional fits to some observed dropsize distribution and parameterization of rain. J. Atmos. Sci., 41, 1648-1661.
Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46, 2008–2025.
Yang, M.-J., C.-S. Liao, and J.-P. Chen, 2007: Sensitivity of orographic precipitation to Taiwan’s environment condition and terrain characteristics: An idealized two-dimensional modeling.Terr., Atmos., and Oceanic Sci., submitted.
Yu, C.- K., and B. J.-D. Jou, 2005: Radar observations of diurnally forced, offshore convective lines along the southeastern coast of Taiwan. Mon. Wea. Rev., 133, 1613-1636.
Yu, C.- K., D. P. Jorgensen, and F. Roux, 2007: Multiple precipitation mechanisms over mountains observed by airborne Doppler radar during MAP IOP 5. Mon. Wea. Rev., 135, 955-984.
Yuter, S. E., and R. A. Houze Jr., 1995a: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 1921–1940.
——, and ——, 1995b: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941–1963.
——, and ——, 1995c: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part III: Vertical mass transport, mass divergence, and synthesis. Mon. Wea. Rev., 123, 1964–1983.
Zeng, Z., S. E. Yuter, R. A. Houze Jr., and D. E. Kingsmill, 2001: Microphysics of the rapid development of heavy convective precipitation. Mon. Wea. Rev., 129, 1882–1904.
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote .Sens., 39, 830-841.
Zrnic´, D. S., and A. V. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454–464.
Zrnic´, D.S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389-406
Zrnic´, D. S., T.D. Keenan, L.D. Carey, and P. May, 2000: Sensitivity analysis of polarimetric variables at a 5-cm wavelength in rain. J. Appl. Meteorol., 39, 1514-1526.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔