(18.204.48.40) 您好!臺灣時間:2019/10/14 11:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:黃喬渝
研究生(外文):Chiau-iu Huang
論文名稱:單壁奈米碳管修飾電極對硝基酚和銅之電化學分析
論文名稱(外文):Electrochemical analysis of nitrophenol and copper(II) using single walled carbon nanotubes modified electrode
指導教授:秦靜如秦靜如引用關係
指導教授(外文):Ching-Ju Monica Chin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:121
中文關鍵詞:電化學吸附循環伏安交流阻抗
外文關鍵詞:AC-Impedancecyclic voltammetryelectrochemicaladsorption
相關次數:
  • 被引用被引用:5
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管的高比表面積與微孔體積,使其成為一熱門的吸附材料,其表面官能基與污染物之替代基會影響吸附機制,通常吸附機制的探討是利用傳統批次吸附實驗結果推測得知,耗費時間較長且不易直接判斷。因此,本研究將單壁奈米碳管經硝酸純化過後,製作成奈米碳管修飾電極,利用電化學方法探討奈米碳管對2-硝基酚(2-NP)、4-硝基酚(4-NP)及銅(Cu(II))之含苯環異構物與重金屬之交互作用。經由碳管定性分析的結果發現,純化後之碳管表面及頂端會產生破壞及開口,且含氧官能基有增加的趨勢,進而增加了碳管表面的帶電性。奈米碳管修飾電極對K3Fe(CN)6具有一定的催化能力,與玻璃碳電極相比增加了電極反應的可逆性,整體反應為擴散控制,經推算後得知奈米碳管修飾電極之反應有效面積為0.235 cm2。
2-NP與4-NP在解離前後有不同的循環伏安分析結果,NP的解離使得電雙層變化與濃度的相關性比在未解離時顯著,又兩者因替代基在鄰位與對位而導致有不同的吸附行為,4-NP較2-NP容易有規則的以π-π作用力堆疊在碳管表面,為多層的排列方式,且隨4-NP濃度提高而增加電容值,其4-NP之替代基也增加了電子活性反應面積。當pH=8時,Cu(II)的沉澱物被碳管吸附而遮蔽了表面官能基,因而減少電容值。Cu(II)與2-NP同時存在時會影響彼此循環伏安分析之結果,且Cu(II)的存在幫助了2-NP吸附在碳管上,當pH=8時,兩者形成錯合物且因空間障礙而遮蔽碳管上之官能基。同時分析Cu(II)與4-NP的氧化還原峰在pH=5時可清楚分辨,且會單獨競爭碳管上之吸附位置;而當pH=8時,Cu(II)的訊號則不明顯,不同型態之Cu(II)吸附在碳管上後平衡了碳管表面的負電荷,使得4-NP有更大的機會被吸附在碳管上。
Carbon nanotubes (CNTs) are popular adsorbents due to high surface area and large micropore volume. The mechanisms of organic compounds adsorption on CNTs are usually investigated by the batch adsorption experiments, which are time-consuming and dubious. The objective of this work was to investigate the adsorption of 2-, 4-NP and Cu(II) on single-walled carbon nanotubes, (SWCNTs) modified electrode via electro-chemical analysis. The cyclic voltammetric study of 2- and 4-NP showed that, after the dissociation of 2- and 4-NP, the effects of concentration on the double layers structure became more important. Also, 2- and 4-NP had different adsorption behaviors because of the location of nitro- groups of them. 4-NP may have more ordered multi-layered structure on the surface of SWCNTs by stronger π-π interactions. Thus, the electrical capacity increased with increasing concentration of 4-NP and the electroactive area was increased by the nitro groups. When Cu(II) and 2-NP coexist, the adsorption of 2-NP on the SWCNTs was enhanced, which may be attributed to the formation of 2-NP / Cu(II) complex. However, Cu(II) and 4-NP had strong competition on the adsorption site at solution pH of 5. When the solution pH was 8, the redox peaks of Cu(II) were not obvious, which indicates that the adsorption of free Cu(II) ions were limited. Also, because the charges on the SWCNTs surfaces were balanced by various cupric species, the adsorption of 4-NP was enhanced.
中文摘要 I
英文摘要 II
誌謝 III
圖目錄 VI
表目錄 IX
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
1-3 研究流程 3
第二章 文獻回顧 4
2-1 奈米碳管 4
2-1-1 基本特性 4
2-1-2 奈米碳管之導電性及其應用 7
2-2 電化學分析原理 11
2-2-1 電化學反應系統 11
2-2-2 電雙層結構與特性 12
2-2-3 循環伏安法 14
2-2-4 交流阻抗法 18
2-3 奈米碳管之電化學分析應用 23
2-3-1 奈米碳管修飾電極之電催化效應 23
2-3-2 奈米碳管修飾電極對物質的分離與測定 26
2-3-3 奈米碳管修飾電極之交流阻抗分析 27
第三章 實驗方法 28
3-1 實驗材料與設備 28
3-1-1 實驗設備 28
3-1-2 實驗材料 31
3-2 實驗方法 33
3-2-1 奈米碳管之純化方法 33
3-2-2 奈米碳管定性分析 34
3-2-3 單璧奈米碳管修飾電極之製備 35
3-2-4 支持電解質之配製 36
3-2-5 電化學分析 37
第四章 結果與討論 40
4-1 奈米碳管之特性分析 40
4-1-1 奈米碳管之表面型態及孔隙分析 40
4-1-2 奈米碳管純化前後之官能基鑑定 44
4-2 奈米碳管修飾電極之電化學特性 45
4-3 奈米碳管修飾電極對硝基酚之電化學分析 52
4-3-1 奈米碳管修飾電極對2-NP之電化學分析 52
4-3-2 奈米碳管修飾電極對4-NP之電化學分析 63
4-4 奈米碳管修飾電極對Cu(II)之電化學分析 71
4-5 奈米碳管修飾電極同時分析硝基酚與Cu(II)之訊號影響 78
4-5-1 奈米碳管修飾電極同時分析2-NP與Cu(II)之訊號影響 79
4-5-2 奈米碳管修飾電極同時分析4-NP與Cu(II)之訊號影響 88
第五章 結論與建議 98
5-1 結論 98
5-2 建議 100
參考文獻 101
1. X. Ren, C. Chen, M. Nagatsu, and X. Wang, “Carbon nanotubes as adsorbents in environmental pollution management: A review,” Chemical Engineering Journal, 170, pp. 395-410 (2011).
2. 蔡涵哲,「以單壁奈米碳管吸附芳香族化合物吸附機制之探討」,碩士論文,國立中央大學環境工程研究所,中壢,2006。
3. J. Li, S. Chen, G. Sheng, J. Hu, X. Tan, and X. Wang, “Effect of surfactants on Pb(II) adsorption from aqueous solutions using oxidized multiwall carbon nanotubes,” Chemical Engineering Journal, 166, pp. 551-558 (2011).
4. S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354, pp.56-58 (1991).
5. S. Iijima and T. Ishihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature, 363, 603-605 (1993).
6. 洪昭南、徐逸明、王宏達 ,「奈米碳管結構及特性簡介」,化工,第49 卷,第23至30頁,2002。
7. 申昌生化科技 CBT Nano-scale Supplier carbon nanotube http://www.cbt.com.tw/0300.html
8. 成會明,「奈米碳管」,五南圖書出版社,2004。
9. 曾俊豪,「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」,博士論文,國立成功大學化學工程學系,臺南,2009。
10. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Fullerenes and Carbon Nanotubes, Academic, San Diego (1996).
11. R. T. K. Baker and P. S. Harries, “Chemistry and Physics of Carbon,” Marcel Dekker New York (1978).
12. 周允文,「利用表面修飾自組裝合金/奈米複合碳材料與其電化學特性研究」,碩士論文,元智大學化學工程與材料科學學系,中壢,2007。
13. 黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第50卷第2 期,第18 至25 頁,2003。
14. 麥富德,「碳奈米管專利地圖及分析carbon nanotube eng 麥富德等作」,行政院國科會科資中心,台北,2002。
15. G. Che, Brinda B. Lakshmi, E. R. Fisher, and C. R. Martin, “Carbon nanotubule membranes for electrochemical energy storage and production,” Nature, 393, pp. 346-349 (1998).
16. A. C. Dillon, K. M. Jones, and T. A. Bekkedahl, “Storage of hydrorgen in single-walled carbon nanotubes,” Nature, 386, pp. 377-379 (1997).
17. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nture, 393, pp. 49-51 (1998).
18. H. D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, “Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix,” Appl. Phys. Lett, 72, pp. 188-190 (1998).
19. M. Cinke, J. Li, C. W. Bauschlicher Jr., A. Ricca, and M. Meyyappan, “CO2 adsorption in single-walled carbon nanotubes,” Chemical Physics Letters, 376, pp. 761-766 (2003).
20. 胡啟章,「電化學原理與方法」,五南圖書出版社,2011。
21. 鄭人豪,「白金奈米顆粒修飾玻璃碳電極及其應用於葡萄糖生醫感測 器之研究」,碩士論文,南台科技大學化學工程研究所,台南,2004。
22. 歐陽姍佩,「鹼性溶液中鎳大環錯鹽聚合膜修飾電極對甲醇及苯甲醇之氧化電觸行為研究」,碩士論文,國立台南師範學院自然科學教育學系,台南,2004。
23. A. J. Bard and L. R. Faulkner, “Electrochemical methods fundamental and application,” John Wiley & Sons Canada 2nd ed. (2001).
24. J. S. Mattson, and H. B. Jr. Mark, Activated Carbon: Surface Chemistry and Adsorption from Solution, Wiley-Vch: New York (1971).
25. 王凱平,「奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究」,碩士論文,國立成功大學化學工程學系碩士班,台南,2005。
26. CH Instruments, Model 600D series Electrochemical Analyer/Working User’s Manual, U.S.A.
27. J. Bard, and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., 2001, Wiley-VCH, New York (2001).
28. A. P. Brown and F. C. Anson, “Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface,” Analytical Chemistry, 49(11), pp. 1589-1595 (1977).
29. 相澤益男、井上徹著,陳震、姚建年譯,「電化學測定方法」,北京大學出版社,1994。
30. 沈育仁,「複合高分子電解質結構與電性之研究」,碩士論文,國立中央大學化學系碩士班,中壢,2003。
31. 吳浩青、李永舫,「電化學動力學」,科技圖書股份有限公司,2001。
32. “Basics on AC Impedance Measurements”, Application Note AC-1. Available upon request from EG&G Princeton Applied Research, Electrochemical Instruments Division.
33. I. I. Suni, “Impedance methods for electrochemical sensors using nanomaterials,” Trends in Analytical Chemistry, 27(7), pp. 604-611 (2008).
34. F. Lisdat and D. Schafer, “The use of electrochemical impedance spectroscopy for biosensing,” Anal Bioanal Chem, 391, pp. 1555–1567 (2008).
35. 格里弟,鮮祺振譯,「電極動力學」,財團法人徐氏基金會,1996。
36. P. J. Britto, K. S. V. Santhanam, and P. M. Ajayan, ” Carbon nanotube electrode for oxidation of dopamine,” Bioelectrochemistry and Bioenergetics, 41, pp. 121-125 (1996).
37. R. Pauliukaite, K. D. Murnaghan, A. P. Doherty, and C. M. A. Brett, “A strategy for immobilisation of carbon nanotubes homogenised in room temperature ionic liquids on carbon electrodes”, Journal of Electroanalytical Chemistry, 633, pp. 106–112 (2009).
38. D. Salinas-Torresa, F. Huertab, F. Montilla, and E. Morallona, “Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes,” Electrochimica Acta, 56, pp. 2464-2470 (2011).
39. H. Luo, Z. Shi, N. Li, Z. Gu, and Q. Zhuang, “Investigation of the electrochemical and electrocatalytic behavior of single-Wall carbon nanotube film on a glassy carbon electrode,” Analytical Chemistry, 73(5), pp. 915-920 (2001).
40. J. Wang, M. Li, Z. Shi, N. Li, and Z. Gu, “Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes,” Electroanalysis, 14(3), pp. 225-230 (2002).
41. F. C. Moraes, M. F. Cabral, L. H. Mascaro, and S. A. S. Machado, “The electrochemical effect of acid functionalisation of carbon nanotubes to be used in sensors development,” Surface Science, 605, pp. 435-440 (2011).
42. M. Musameh, J. Wang, A. Merkoci, and Y. Lin, “Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes,” Electrochemistry Communications, 4, pp. 743-746 (2002).
43. J. Wang, M. Li, Z. Shi, N. Li, and Z. Gu, “Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes,” Analytical Chemistry, 74(9), pp.1993-1997 (2002).
44. C. Yang, “Electrochemical determination of 4-Nitrophenol using a single-wall carbon nanotube film-coated glassy carbon electrode,” Microchim. Acta, 148, pp. 87-92 (2004).
45. W. Huang, C. Yang, and S. Zhang, “Simultaneous determination of 2-nitrophenol and 4-nitrophenol based on the multi-wall carbon nanotubes Nafion-modified electrode,” Anal Bioanal Chem, 375, pp. 703-707 (2003).
46. F. Zhao, L. Liu, F. Xiao, J. Li, R. Yan, S. Fan, and B. Zeng, “Sensitive voltammetric Response of p-Nitroaniline on single-wall carbon nanotube-Ionic liquid gel modified glassy carbon electrodes,” Electroanalysis , 19, pp. 1387-1393 (2007).
47. L. Q. Luo, X. L. Zou, Y. P. Ding, and Q. S. Wu, “Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode, ” Sensors and Actuators B, 135, pp. 61-65 (2008).
48. R. P. Deo and J. Wang, “Electrochemical detection of carbohydrates at carbon-nanotube modified glassy-carbon electrodes,” Electrochemistry Communications, 6, pp. 284-287 (2004).
49. K. Wu, S. Hu, J. Fei, W. Bai, “Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes,” Analytica Chimica Acta, 489,pp. 215-221 (2003).
50. D. Sun, X. Xie, Y. Cai, H. Zhang, K. Wu, “Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes–Nafion film,” Analytica Chimica Acta, 581, pp. 27-31 (2007).
51. C. Hu, X.Chen, and S. Hu, “Water-soluble single-walled carbon nanotubes films: Preparation, characterization and applications as electrochemical sensing films,” Journal of Electroanalytical Chemistry, 586, pp. 77-85 (2006).

52. F. C. Moraes, S. T. Tanimoto, G. R. Salazar-Banda, S. A. S. Machado, and L. H. Mascaro, “A new indirect electroanalytical method to monitor the contamination of natural waters with 4-Nitrophenol using multiwall carbon nanotubes, ” Electroanalysis, 21, pp. 1091-1098 (2009).
53. Hazardous Substances Data Bank(HSDB) : http://www.nlm.nih.gov/
54. C. G. R. Heald, G. G. Wildgoose, L. Jiang, T. G. J. Jones, and R. G. Compton, “Chemical derivatisation of multiwalled carbon nanotubes using diazonium salts,” ChemPhysChem, 5, pp. 1794-1799 (2004).
55. R. S. Nicholson, J. M. Wilson, and M. L. Olmstead, “Polarographic theory for an ECE mechanism application to reduction of p-nitrosophenol,” Analytical chemistry, 38(4), pp. 542-545. (1966).
56. C. Y. Kuo, “Water purification of removal aqueous copper (II) by as-grown and modified multi-walled carbon nanotubes,” Desalination, 249, pp. 781-785. (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔