(18.210.28.227) 您好!臺灣時間:2019/11/23 09:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:黃姵珊
研究生(外文):Pei-shan Huang
論文名稱:氫氣的調控對化學氣相沉積法成長石墨烯之影響
論文名稱(外文):Study of Graphene Grown by Low Pressure Chemical Vapor Deposition with Different H2/CH4 Ratio.
指導教授:紀國鐘紀國鐘引用關係李文獻李文獻引用關係
指導教授(外文):Gou-chung ChiWen-Hsien Li
學位類別:碩士
校院名稱:國立中央大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:69
中文關鍵詞:石墨烯化學氣相沉積法銅箔
外文關鍵詞:GrapheneCVDCooper foil
相關次數:
  • 被引用被引用:1
  • 點閱點閱:499
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文是探討氫氣對成長石墨烯的影響,本研究中以氫氣、甲烷為反應氣體利用低壓化學氣相沉積法成長在銅箔上。探討在製程條件上改變氫氣流量,對LPCVD成長石墨烯之影響。所成長之石墨烯主要以拉曼光譜分析其石墨化品質。此外,並以掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分別檢視成長之試片表面形貌。實驗結果顯示,本研究成功以LPCVD方法成長石墨烯,在氣體比例H2/CH4=100 sccm/10 sccm,獲得最佳品質之石墨烯,可能的原因為氧氣與大量H2及CHx反應生成OH等自由基,平衡製程環境中C與H自由基而獲得較高品質。由SEM結果在氫氣流量為100sccm時,觀察到六角結構的石墨烯。同時,拉曼分析結果表示氣體比例H2/CH4=100 sccm/10 sccm時,半高寬約為30cm-1以及2D/G比例為2.5。證明大流量的氫氣的條件下,較易成長出高品質的石墨烯。
The purpose of the research was to investigate graphene with different hydrogen flow. Graphene were growth on Copper foil as substrate by Low pressure chemical vapor deposition system with H2 and CH4 as source gases. Graphene were examined by SEM、FTIR and Raman spectroscopy to evaluate their structures and properties. The experimental results show that we successfully growth graphene by LPCVD. When the gas ratio of H2/CH4 = 100 sccm/ 10 sccm, we get the best quality of graphene due to the Oxygen and Hydrogen and CHx the reaction of OH radicals, C and H radicals in the environment of the balancing process to receive a higher quality. From SEM image results reveal that of graphene domains, which has a hexagonal shape on a cooper foils at 100sccm of hydrogen flow. Raman analysis results that gas ratio H2/CH4 = 100 sccm/10 sccm has 30cm-1 of FWHM 2.5 of 2D / G ratio.
摘要 I
Abstract II
目錄 III
圖目錄 IV
表目錄 VI
第一章 簡介 1
第二章 文獻回顧 5
2-1 石墨晶體結構 5
2-2 製備石墨烯之方法 11
2-2.1 膠帶法與微機械剝離法 12
2-2.2 碳化矽磊晶法 13
2-2.3 室溫散布塗佈法 14
2-2.4 氧化石墨烯化學還原法 15
2-2.5 過渡金屬表面析出法 18
2-3 化學氣相沉積法(Chemical Vapor Deposition) 22
2-3.1 石墨烯的成長機制 33
2-3.2 載流氣體之氫氣扮演的角色 34
2-4 研究動機 35
第三章 研究方法及實驗設備 36
3-1 化學氣相沉積介紹與製程變數 36
3-2 銅箔為催化劑的化學氣相沉積成長 41
3-3 薄膜分析與鑑定之儀器介紹 44
3-3.1 場發射式掃描電子顯微鏡 (FE-SEM) 44
3-3.2 拉曼光譜儀 (Raman Spectrometer) 47
3-3.3 傅立葉轉換紅外光譜儀 (FTIR spectrometer) 53
第四章 結果與討論 55
4-1 石墨烯之表面形貌分析 55
4-2 石墨烯之拉曼光譜分析 56
4-3 石墨烯之FTIR光譜分析 60
第五章 總結 64
5-1 結論 64
5-2 未來研究與發展方向 65
參考文獻 66
[1] A. K. Geim and K. S. Novoselov, The rise of graphene, Nat Mater, vol. 6, pp.183-191, 2007.
[2] J.-H. Chen et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat Nano, vol. 3, pp. 206-209, 2008.
[3] T. Durkop et al., Extraordinary Mobility in Semiconducting Carbon Nanotubes, Nano Letters,
vol. 4, pp. 35-39, 2004.
[4] C. Lee et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol. 321, pp. 385-388, July 18, 2008.
[5] I. W. Frank et al., Mechanical properties of suspended graphene sheets, 2007, pp. 2558-2561.
[6] K. S. Novoselov et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol. 306, pp. 666-669, October 22, 2004.
[7] D. We et al., Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical
Properties, Nano Letters, vol. 0, 2009.
[8] X. Wu et al., B2C Graphene, Nanotubes, and Nanoribbons, Nano Letters, vol. 9, pp. 1577-1582, 2009.
[9] K. S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent
electrodes, Nature, vol. 457, pp. 706-710, 2009.
[10] Y. Zhang et al., Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Applied Physics Letters, vol. 86, pp. 073104-3, 2005.
[11] W. A. de Hee et al., Epitaxial graphene, Solid State Communications, vol. 143, pp. 92-100, 2007.
[12] G. Eda et al., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat Nano, vol. 3, pp. 270-274, 2008.
[13] S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, Nat Nano, vol. 4, pp. 217-224, 2009.
[14] X. Li et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,
Science, p. 1171245, May 7, 2009.
[15] K. S. Novoselov et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol. 306, p. 666-669, 2004.
[16] C. Berge et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene,
Science, vol. 312, p. 1191-1196, 2006.
[17] J. H. Chen et al., Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nature Nanotech., vol. 3,p. 206-209, 2008.
[18] YM. Lin et al., Operation of Graphene Transistors at Gigahertz Frequencies, Nano Lett., vol. 9, p. 422-426, 2009.
[19] YM. Lin et al., 100-GHz Transistors from Wafer-Scale Epitaxial Graphene , Science, vol. 327, p. 662, 2010.
[20] J. Hass et al., The growth and morphology of epitaxial multilayer grapheme, J. Phys.: Condens. Matter, vol. 20, p.323202, 2008.
[21] 洪連輝, 劉立基, 魏榮君, “固態物理學導論”, 第七版.
[22] D. D. L. Chung, Review graphite, Journal of Materials Science, vol. 37, p. 1475, 2002.
[23] S. Latil and L. Henrard, Charge Carriers in Few-Layer Graphene Films, Phys. Rev. Lett., vol. 97, p. 036803, 2006.
[24] K. S. Novoselov et al., Electric Field Effect in Atomically Thin Carbon Films, Science, vol. 306, pp. 666-669, October 22, 2004.
[25] Y. Zhang et al., Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices, Applied Physics Letters, vol. 86, pp. 073104-3, 2005.
[26] W. A. de Heer et al., Epitaxial graphene," Solid State Communications, vol. 143, pp. 92-100, 2007.
[27] C. Berger et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science, vol. 312, pp. 1191-1196, May 26 2006.
[28] D. S. Lee et al., Raman Spectra of Epitaxial Graphene on SiC and of Epitaxial Graphene
Transferred to SiO2, Nano Lett., 2008.
[29] Z. Wu, Z. Chen et al., Transparent, Conductive Carbon Nanotube Films, Science, vol. 305, pp. 1273-1276, August 27, 2004 2004.
[30] P. Blake et al., Graphene-Based Liquid Crystal Device, Nano Lett., vol. 8, pp. 1704-1708, 2008.
[31] C. Xu et al., Synthesis of amphiphilic graphite oxide, Carbon, vol. 46, pp. 386-389, 2008.
[32] G. Eda et al., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat Nano, vol. 3, pp. 270-274, 2008.
[33] Y. Si et al., Synthesis of Water Soluble Graphene, Nano Lett., vol. 8, pp. 1679-1682, 2008.
[34] V. C. Tung et al., High-throughput solution processing of large-scale graphene, Nat Nano, vol. 4, pp. 25-29, 2009
[35] J. T. Grant et al., A study of Ru(0001) and Rh(111) surfaces using LEED and Auger electron
spectroscopy, Surface Science, vol. 21, pp. 76-85,1970.
[36] P. Yi et al., Formation of graphene on Ru (0001)surface, Chinese Physics, vol. 16, pp. 3151-3153, 2007.
[37] H. Z. Yi Pan et al., Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene
Monolayer Formed on Ru (0001), Advanced Materials, vol. 9999, p. NA, 2008.
[38] S. Marchini et al., Scanning tunneling microscopy of graphene on Ru(0001), Physical Review B (Condensed Matter and Materials Physics), vol. 76, pp. 075429-9, 2007.
[39] T. H. D. Fujita, Surface precipitation of graphite layers on carbon-doped nickel and their stabilization effect against chemisorption and initial Oxidation, Surface and Interface Analysis, vol. 19, pp. 430-434, 1992.
[40] D. Fujita et al., Surface precipitation process of epitaxially grown graphite (0001) layers on carbon-doped nickel(111) surface, in The 40th National Symposium of the American Vacuum Society, Orlando, Florida (USA), 1994, pp. 2134-2139.
[41] J. C. Shelton et al., Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition, Surface Science, vol. 43, pp. 493-520, 1974.
[42] a. L. L. B. W. M. Hess, Proc. 6th Int. Congr. on Electron Microscopy (Kyoto), vol. 1, p. 569,
1966.
[43] A. E. Karu and M. Beer, Pyrolytic Formation of Highly Crystalline Graphite Films, Journal of Applied Physics, vol. 37, pp. 2179-2181, 1966.
[44] S. Park and R. S. Ruoff, Chemical methods for the production of graphene, Nat Nano, vol. 4, pp. 217-224, 2009.
[45] J. Vaari et al., The adsorption and decomposition of acetylene on clean and K-covered Co(0001), Catalysis Letters, vol. 44, pp. 43-49, 1997.
[46] K. Yamamoto et al., Charge-transfer mechanism for the (monolayer graphite) /Ni(111) system, Physical Review B, vol. 45, p. 11358, 1992.
[47] Y. Gamo et al., Atomic structure of monolayer graphite formed on Ni(111), Surface Science, vol. 374, pp. 61-64, 1997.
[48] C. Oshima and A. Nagashima, Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces," Journal of Physics: Condensed Matter, vol. 9, pp. 1-20, 1997.
[49] T. A. Land et al., STM investigation of single layer graphite structures produced on Pt(111) by
hydrocarbon decomposition, Surface Science, vol. 264, pp. 261-270, 1992.
[50] H. Ueta et al., Highly oriented monolayer graphite formation on Pt(111) by a supersonic
methane beam, Surface Science, vol. 560, pp. 183-190, 2004.
[51] D. E. Starr et al., Carbon films grown on Pt(111) as supports for model gold catalysts, Surface Science, vol. 600, pp. 2688-2695, 2006.
[52] A. T. N''Diaye et al., Two-Dimensional Ir Cluster Lattice on a Graphene Moir[e-acute] on Ir(111),
Physical Review Letters, vol. 97, pp. 215501-4, 2006.
[53] J. Coraux et al., Structural Coherency of Graphene on Ir(111)," Nano Letters, vol. 8, pp. 565-570, 2008.
[54] S. Helveg et al., Atomic-scale imaging of carbon nanofibre growth, Nature, vol. 427, pp. 426-429, 2004.
[55] P. R. Somani et al., Planer nano-graphenes from camphor by CVD, Chemical Physics Letters, vol. 430, pp. 56-59, 2006.
[56] S. Maruyama et al., Low-temperature synthesis of high-purity single-walled carbon nanotubes
from alcohol, Chemical Physics Letters, vol. 360, pp. 229-234, 2002.
[57] A. N. Obraztsov et al., Chemical vapor deposition of thin graphite films of nanometer thickness,
Carbon, vol. 45, pp. 2017-2021, 2007.
[58] A. N. Obraztsov et al., Raman scattering characterization of CVD graphite films, Carbon, vol. 46, pp. 963-968, 2008.
[59] Q. Yu et al., Graphene segregated on Ni surfaces and transferred to insulators, Applied Physics Letters, vol. 93, pp. 113103-3, 2008.
[60] A. Reina et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, vol. 9 (1), pp. 30-35, 2009.
[61] K. S. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent
electrodes, Nature, vol. 457, pp. 706-710, 2009.
[62] X. Li et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,
Scie
[63] Ivan Vlassiouk et al., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-
Crystal Graphene, nano, vol.5 (7), pp. 6069–6076, 2011.
[64] T. B. Massalski et al., Phase diagrams of binary copper alloys, Monograph series on alloy phase diagrams, vol. 10, p. 109, 1994.
[65] G.A. L’opez and E.J. Mittemeijer, The solubility of C in solid Cu, Scripta Materialia, vol. 51, Issue 1, p. 1-5, 2004.
[66] K. S. Kim et al., Large-scale pattern growth of grapheme films for stretchable transparent
electrodes, Nature, vol. 457, pp. 706-710, 2009.
[67] Q. Yu et al., Graphene segregated on Ni surfaces and transferred to insulators, Applied
Physics Letters, vol. 93, pp. 113103-3, 2008.
[68] A. Reina et al., Large Area Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Letters, vol. 9 (1), pp. 30-35, 2009.
[69] F. G. Seung et al., Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate
by Chemical Vapor Deposition: Wrinkle Formation, Advanced Materials, vol. 9999, p. NA, 2009.
[70] A. C. Ferrari et al., Raman Spectrum of Graphene and Graphene Layers, Phy. Rev. Lett., vol. 97, p.187401, 2006.
[71] J. R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy, Else-vier, 2003.
[72] N. B. Colthup et al., Introduction to Infrared and Raman Spectroscopy, Academic Press, 1990.
[73] M. S. Dresselhaus et al., Raman spec-troscopy of carbon nanotubes, Phys. Rep.,409,47-99, 2005.
[74] A. C. Ferrari et al., Raman Spectrum of Graphene and Graphene Layers”, Phy. Rev. Lett., 97, 187401, 2006.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔