跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮武雄
研究生(外文):Ping, Wu-Xiong
論文名稱:液相磊晶砷化鎵鋁-砷化鎵光電元件的製造特性
論文名稱(外文):GROWTH & PROPERTIES OF AlGaAs-GaAs PHOTOELECTRIC DEVICES PREPARED BY LIQUID- PHASE EPITAXIAL TECHNIQUES
指導教授:施敏施敏引用關係皮爾森皮爾森引用關係于惠中
指導教授(外文):Shi, MinPi-Er, SenYu-Hui, Zhong
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1980
畢業學年度:69
語文別:中文
論文頁數:337
中文關鍵詞:液相磊晶砷化鎵鋁砷化鎵光電元件歐階波譜分析儀測試儀能量離散法電機工程
外文關鍵詞:ELECTRICAL-ENGINEERING
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文是討論利用液相磊晶技術,將砷化鎵鋁晶長在砷化鎵表面的特性及其光電元件
的製造與測試。對砷化鎵鋁的固定及梯度能階應用在太陽能電池及壓控光開關元件上
的電性與光性,詳加測量與分析。利用金的合金完成元件的歐姆連接及配合陽極氧化
形成防止反射層。並提出元件表面電解法鍍金做歐姆連接的新技術研究。
利用熱處理使基片表面形成濃度的梯度分佈,及在砷含量未飽和的溶液中,蝕刻後再
等溫晶長一層能階隙梯度遞增的砷化鎵鋁表面層,經此構成雙漂移電場,以減少表面
損失,增加收集效率。同時,利用掃描式電子顯微鏡的能量離散法、歐階(Auger)
波譜分析儀及光激光法探討固定及梯度能階變化與接面特性之研究。使用橢圓測試儀
(Ellipsometer)及精密厚度測量儀,分析砷化鎵及砷化鎵鋁之陽極氧化層的光性常
數。
在理論方面;使用計算機輔助模擬,分析雙漂移電場等各種不同結構的太陽能電池,
在變化其雜質濃度,能階寬度,磊晶層厚度及內部電場等情況下,尋求最佳的元件設
計條件。將這些結果應用到實際製造上,並建立簡化太陽能電池的製造程序。經模擬
太陽光的AM1 (100 毫瓦/平方公分)及修正面積後的太陽能電池的輸出特性是開路
電壓(Voc )0.86 伏特,短路電流密度(J8c )為25.2 毫安培/平方公分,修正參
數(F. F. )為0.69 ,故轉換效率為15%左右。
電壓調變光開關元件(VCLS)為從事太陽能電池的能階分佈研究而獲得的新元件。經
由各種電性及光性測試,證實其優點為可任意選擇照光導通電壓,並由光波譜分析,
若適當選定材料、組成、厚度、及雜質濃度,可做狹窄光波頻帶(如50埃)至廣頻帶
的選定性偵測,以及改善逆向崩潰電壓及順向導通電壓。為往後半導體彩色用元件及
寬窄波帶偵側或高功率壓控光開關作用,提供新的元件,使光與電的調變邁入新的里
程。經實驗與分析結果其使用規格是光導通電壓為0 至500 伏特,逆向崩潰壓為為0
至1000伏特,順向導通電壓為0.3 至50伏特。最後在結論中,提出作者對此種材料與
元件的看法與建議。
///////
Graded and constant bandgap A1×Ga1×As layers for use in solar cells and
voltage-controlled light-switching (VCLS) diodes were grown by liquid
phase epitaxial techniques and characterized by means of electrical and
optical measurements. Several device configurations were investigated but
the one to be described here is (P+)
A1×Ga1×As:Ge-(P)gaAs:Ge-(n-)GaAs-(n+)GaAs:Te withe Au-Zn and Au-Ge-Ni a
lloyed ohmic contacts on the front and back surfaces, respectively. An
antireflection coating was applied to the front surface by anodic
oxidation.
The double-drift fields in the devices were formed by (1) thermal
diffusion of Te impurities from the n+ substrate into the N- undoped GaAs
active layer and (2) growth of the surface A1×Ga1-×As layer in an
isothermal As-undersaturated solution which caused an increase in both
×and Eg as one approaches the surface. The impurity gradient was measured
by means of electrolytic etching and Schottky barrier techniques.
Characterization of the graded bandgap layer was provided by Auger
spectroscopy. The optical constants of the anodic oxides and A1GaAs layers
were measured with an ellipsometer and step-profiler.
A computer-aided simulation for the solar cell design was carried out
which provided for adjustments in impurity concentration, energy bandgap,
and built-in field. The results were used in the design and construction
of devices with optimum characteristics. Several completed solar cells
were tested under an AM1 (100 ml/cm2) solar simulator. An open-circuit
voltage of 0.86 V, short-circuit current density of 25.2 mA/cm2, a fill
factor of 0.69, and a conversion efficiency of 15% were obtained.
The VCLS diodes were made by successive crystallization of epitaxial
layers of A1GaAs and GaAs on GaAs substrates. By controlling the
thickness, impurity concetration, and energy bandgap of these layers, the
light turn-on voltage, breakdown voltage, and absorption spectrum could be
adjusted. VCLS diodes constructed in this manner exhibited maximum turn-on
and breakdown voltages of 500 V and 1000 V, respectively.
封面、摘要、目錄
I. Introduction
A. General Review
B. Heterojunction Solar Cells
C. AlGaAs-GaAs Heterojunction Solar Cells
D. Outline of the Thesis
E. References
II. Theoretical Analysis
A. Introduction
B. Energy Band-gap Heterojunction Solat Cells
C. Computer-aided Numerical Analysis
D. References
III. Growth of AlGaAs on GaAs Substrates
A. Introduction
B. AlGaAs-GaAs Liquid-phase Epitaxial Techniques
C. Device Fabrication
D. Reference
IV. Experimental Results and Discussion
A. Introduction
B. Growth Criteria and Surface Mophology
C. Layer and doping Characteristics
D. Electrical Measurements
E. Optical Measurements
F. Solar Cell Characteristics
G. Discussions and Conclusions
H. References
V. Voltage-controlled Light-switching Diodes
A. Introduction
B. Electrical Characteristics
C. Spectral Response
D. Fabrication
E. Application and Discussion
F. References
VI. Conclusions and Recommendations
A. Conclusions
B. Suggestions for Future Works
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊