跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 07:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳國崇
論文名稱:構架、剪力牆及土壤三者間之彈性靜態互制行為
指導教授:許茂雄許茂雄引用關係
學位類別:碩士
校院名稱:國立成功大學
系所名稱:建築研究所
學門:建築及都市規劃學門
學類:建築學類
論文種類:學術論文
論文出版年:1984
畢業學年度:72
語文別:中文
論文頁數:138
中文關鍵詞:彈性靜態互制行為耕者有其田
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1

構架、剪力牆與土壤三者間的彈性靜態互制行為,在潘俊榮先生的碩士論文(*10)裡已有充分的討論。可是,一棟建築物即使只在垂直荷重作用下,柱梁都可能發生撓曲龜裂而降低其剛度,進而影響其對水平力的分擔能力。何況在中度地震力或強烈地震力作用下,必會因柱、梁、牆及土壤之龜裂、屈伏等非彈性行為而影響彼此間對水平力的分擔能力。因此,以彈性分析法所得之剪力牆(或構架)之層剪力的分擔分率在不同程度的水平外力作用下,到底有幾分正確性頗值懷疑。
為解決這個疑問,本文以一單間多層構架和同高度之剪力牆以獨立基腳、筏式基礎坐於土壤上成打樁基礎。然後先加法規規定之垂直荷重;再以增量法加上法規規定之水平分佈外力,使其由零開始;依比例逐漸增大,直到整體結構破壞、跨下為止。在各個荷重階段均不斷修正降低柱、梁、牆及基礎之個別剛度。本文於修正降低各構材之剛度時,除考慮ACI規範建議之有效轉動價量(Effective Moment of Inertia)公式之外,並加以考慮下列因素對剛度之影響:
(1)軸力對剖面中立軸之影響(即對轉動價量之影響)。
(2)軸力對側向撓曲剛度之影響。
(3)剪力變形對剛度之影響。
(4)剪力龜裂對剛度之影響。
(5)節點握裹滑移對剛度之影響。
(6)土壤對地梁、基腳之剛度影響。
於考慮上述參數後,本文即建立一套非彈性增量剛度法電子計算機分析程式,並以之計算各荷重階段下剪力牆對層剪力之分擔百分率。最後將各荷重階段下之剪力牆層剪力分擔百分率和依彈性分析法所得者作一比較,俾讓結構工程師對彈性分析法所得互制力之正確性有一初步認識。


The behavior of static-elastic interactions among frame, shear-wall, and foundation had been discussed in Pan's paper. (*10) However, the flexural cracks of beams and columns would affect the horizontal-shear stiffness of columns even only under vertical loads. Once the earthquake loading comes, no matter how small or how large the loading will be, the cracking and yielding of columns, beams, walls, and soils would change their distribution capacities to horizontal earthquake loads. In another word, the distribution capacity of each column and each wall calculated by elastec analysis would be changed from time to time under different horizontal loads.
In order to investigate the change of distribution capacity to horizontal loads, a one-bay frame with shear-walls was employed to analysis for single footings, mat-foundations and pile foundations. Affter the vertical load specified by Chinese Building Code has been applied, the horizontal load was applied then by increamental meth-ode, starting from zero up to total collapse of the structure. The individual element stiffness of beams, columns, walls and foundations were changed at every loading stage. Beside the equ-ation of effective moment of inertia recommend by ACI Code, the element stiffness calculated in this paper was considered by the following param-eters:
(1) the change of neutral axis by axial force.
(2) the change of secondary flexural stiffness by axial force.
(3) the change of flexural stiffness by shear deformation .
(4) the change of stiffness by diagonal shearcracks.
(5) the change of stiffness by anchorage bond-slip.
(6) the change of tie beam stiffness and found-ation stiffness due to soil.
A complete computer program by considering above parameters was established in this paper and then was used to analysis the distribution percentage of shear walls to horizontal earthquake load. In order to understand the defferences
of distribution percentages between the results of this paper and the results of traditional elastic methode, the distribution curves under different loading stages were plotted for compa-rison.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top