跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/13 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊英鴻
研究生(外文):Chuang Ying-Hung
論文名稱:二次價值函數新計算法及其在控制系統設計上之應用
論文名稱(外文):A New Method for Computing Quadratic Cost Functionals and Its Application to Control System Design
指導教授:黃奇黃奇引用關係
指導教授(外文):Hwang Chyi
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:1993
畢業學年度:81
語文別:中文
論文頁數:78
中文關鍵詞:二次價值函數簡化模式資料取樣
外文關鍵詞:Quadratic Cost FunctionalsReduced-ModelSampled-data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在控制系統中,誤差平方積分(ISE)為最常用的性能指標。對不含時延的
系統之二次價值函數計算,在數學上,很容易處理;但對含時延之控制系
統,其二次價值函數解析解不易求得。文獻上所提之方法,大多僅適用於
較簡單之時延系統。本論文中,我們利用Parseval定理與雙線性轉換,將
二次價值函數之計算映射至定區間[0,.pi.],以便利用具有步距控制能力
的數值積分法精確且快速地計算出二次價值函數。此法雖不是解析解,但
其計算速度快、適用範圍廣之優點,對於解決含有一個或數個時延之系統
的最適化問題,皆有相當之成效。因此,我們將之應用到以下三個問題上
: (1)應用於高階系統之模式簡化,並利用Routh .gamma.-.delta. 標準
式之特性,可找出一個低階帶有時延之最佳簡化模式,此簡化模式符合穩
定性之要求。 (2)應用此法於時延系統,可設計出滿足增益邊限與相位邊
限規格之PID控制器,使得整個閉環系統之單位階梯應答ISE 極小化。
(3)利用此法於取樣資料系統,可解決以類比控制系統時間積分性能準則
(time integral performance criteria)為基礎設計數位控制系統所遭遇
之問題,以便找出數位PID控制器之參數,使得取樣資料系統全時域(
full time-domain)之單位階梯應答的ISE極小化。

The integral of the squared error is often used as a
performance index in the design of control systems. The
evaluation of ISE for systems having no delays can be easily
accomplished by a parametric method which does not need to find
the time response of the system. For systems with time delays,
however, the evaluation of ISE is not an easy task. In this
thesis, a direct numerical approach is presented to the
evaluation of quadratic cost functionals for linear systems
having multiple time delays. It is based on making use of the
Parseval theorem and the bilinear transformation so that the
computation of ISE involving time delays can be evaluated
accurately and efficiently by means of a numerical integration
method with automatic step-size adjustment. With this numerical
algorithm of computing ISE, the following three control
problems are solved: (1)Optimal reduced-order models with time
delay: By representing the delay-free part of the reduced-order
model in the Routh .gamma.-.delta. canonical form, the optimal
parameters and the time delay are searched by an existing
gradient-based method such that the ISE between the unit step
responses of the system and model is minimized. (2)Design of an
optimal PID controller satisfying prescribed gain and phase
margins: The PID controller is find for a system such that the
integral of the squared error of the closed-loop system subject
to a unit step input is minimized, while satisfying the
prescribed gain and phase margins. (3)Design of an optimal
digital controller for sampled-data systems: With the integral
of squared-error as the performance index, the parameters of
the digital PID controller are searched to minimize the
performance index.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top