跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳順治
研究生(外文):Shun-Jyh Wu
論文名稱:以自調非結構上風計算法研究穩態與非穩態渦輪串聯葉片流場
論文名稱(外文):Numerical Study of Steady and Unsteady Turbine Cascade Flows by an Adaptive Unstructured Upwind Approach
指導教授:黃啟鐘
指導教授(外文):Chii-Jong Hwang
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1993
畢業學年度:81
語文別:英文
論文頁數:313
中文關鍵詞:非結構網格上風有限體積法渦輪串聯葉片流場
外文關鍵詞:Unstructured MeshUpwind Finite-Volume SchemeTurbine Cascade Flows
相關次數:
  • 被引用被引用:0
  • 點閱點閱:109
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的在於發展一套新的自調上風有限體積法,以研究次音速與
穿音速渦輪串聯葉片之穩態與非穩態流場。針對非黏滯與黏滯性可壓縮流
,本文於非結構三角形與三角形及四方形混合格點上求解歐拉與拿維爾-
史托克方程式。為建造非結構網格,本研究提出一套新的自調格點產生技
巧,其中包含單一與雙重背景網格概念、計算網格重建參數之誤差指標、
分佈內部點之格點串集法、三角形網格與三角形及四方形混合格點之編織
技巧。為使數值結果達到更高準確度,本文發展一套新的頂點有限體積上
風解法,此解法包合多步級朗奇-庫塔(Runge-Kutta) 時間積分法、洛
依(Roe) 之流量差分分離法、特徵變數之瑪索(MUSCL) 內插法、無反射性
邊界處理法、以及一新的旋轉外插邊界處理法。針對穩態問題,則採用非
標準之朗奇-庫塔步級係數、區域時間步階與殘值平滑化法以加快數值解
之收歛速度。為進一步驗證此套自調上風解法,本文研究斜震坡在壁面之
反射、超音速流經一具有圓弧形突出物的管道、流經單一翼剖面與雙翼剖
面之穿音速流場、平板之層流邊界層、斜震波/層流邊界層交互作用、以
及平板之紊流邊界層。完成計算求解步驟之評估後,本文採用此套數值方
法研究次音速渦輪串聯葉片之非黏滯流場、穿音速渦輪串聯葉片之非黏滯
性與黏滯性流場。針對非黏滯性流場,轉子中的非穩態現象主要來自定子
與轉子葉片之相對運動。為節省計算時間,本文並不直接同時求解定子與
轉子之流場,而模擬尾流與勢流效應以研究轉子葉片間流場的非穩態特性
。尾流與勢流效應是在轉子入口處分別指定一尾流速度曲線與微小壓力干
擾。為了解流場特性,本文探討了葉片表面之馬赫數分佈、單獨黏性尾流
造成之非均勻入口效應、單獨勢流交互作用、尾流與勢流合併作用之效應
、以及作用於渦輪葉片上之非穩態負荷。根據本文之結果,勢流作用對於
非穩態負荷之影響比尾流作用大;另一方面,穿音速渦輪葉片之非穩態流
場比次音速葉片更為複雜,這是由於轉子葉片、震波、尾流與勢流干擾之
複雜交互作用。本文進一步研究定子與轉子葉片間距效應時發現,非穩態
負荷之變動大小並非隨間距增加而一直單調地遞減。為研究穿音速渦輪葉
片之黏性流場,本文於混合之結構-非結構格點上求解拿維爾-史托克方
程式。計算中使用三種格點系統(粗格點、細格點、以及自調格點)以探
討計算格點對於數值結果之影響。由此數值結果顯示,只有目前所用之自
調格點能有效
The purpose of this thesis is to study the steady and
unsteadyphenomena of subsonic and transonic turbine cascade
flows by using a new adaptive upwind finite-volume algorithm on
mixed type of meshes. For inviscid and viscous compressible
flows, the Euler and full Navier-Stokes equations are solved on
the unstructured triangular and/or mixed quadrilateral-
triangular meshes. To obtain the unstructured mesh system,
several adaptive mesh generation techniques, which includes the
concepts of single and dual background meshes, the error
indicators for evaluating remeshing parameters, the nodes-
clustering methods for generating interior nodes, and the
techniques for forming triangles and quadrilaterals, are
presented. In the present approach, the multi-step Runge-Kutta
time integration, Roe''s flux-difference-splitting Riemann
solver, MUSCL differencing with characteristic interpolation
variables, and appropriate treatments of boundary conditions
are included. For steady-state problems, the non-standard
weighting of Runge-Kutta stages, local time steps and residual
smoothing are introduced to accelerate the calculations. To
validate the current adaptive upwind approaches, the oblique
shock reflection at a wall, supersonic flow passing through a
channel with a 4% circular arc bump, transonic flows around
single and two-element airfoils, laminar boundary layer flow on
a flat plate, oblique shock/laminar boundary layer interaction,
and turbulent boundary layer flow on a flat plate are
investigated. By using the current adaptive approach, steady
and unsteady flows of subsonic and transonic turbine cascades
are studied. For the inviscid unsteady flows in the rotor
passages, the viscous-wake and potential-flow interactions are
modeled. These are achieved by prescribing a velocity defect
and a small pressure disturbance at the inlet plane of the
rotor blade row.
摘要
ABSTRACT
CONTENTS
NOMENCLATURE
LIST OF TABLES
LIST OF FIGURES
I INTRODUCTION
1.1Importance of Axial Gas-Turbine Engines
1.2 Flow Phenomena in Turbomachine
1.3 Review of Related Works
1.4 Objectives and Contents
II NUMERICAL APPROACHES
2.1 Review of Numerical Schemes on Unstructured Mesh
2.2 Governing Equations
2.3 Finite Volume Upwind Formulation
2.4 time Integration
III UNSTRUCTURED MESH GENERATION
3.1 Review of Mesh Generation Algorithms
3.2 Mesh Generation Procedures
3.3 Error Indicatiros
3.4 Construction of Background Grid
3.5 Creation of Nodal Points
3.6 Triangulation Techniques
3.7 Adaptive Mesh Enrichment
3.8 Summary
IV BOUNDARY CONDITIONS
4.1 Far-Field Boundary Conditions
4.2 Nonreflective Boundary Condition
4.3 Boundary Conditions on the Wall Surface
4.4 Periodic Boundary Condition
V VALIDATION OF THE CURRENT APPROACH
5.1 Inviscid Flow for REM1 Approach
5.2 Inviscid Flow Calculations by Using REM2 Approach
5.3 Inviscid Flow Calculations by Using REM3 Approach
5.4 Viscous Flow Calculations by Using REM3 Approach
5.5 Summary
VI STEADY AND UNSTEADY TURBINE CASCADE FLOWS
6.1 Inviscid Flows of Subsonic Turbine Cascade
6.2 Inviscid Flows of Transonic Turbine Cascade
6.3 turbulent Flow of Transonic Turbine Cascade
VII CONCLUSIONS
REFERENCES
TABLES
FIGURES
VITA
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top