跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/02 16:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉源昌
研究生(外文):Yuan-Chang Liou
論文名稱:橢圓型自調式格點於平行板中強制對流熱傳局部強化之數值模擬
論文名稱(外文):Local Heat Transfer Enhancement of Forced Convection Flow through Parallel Duct on Adaptive Grid Generated by Elliptic Equations
指導教授:鄭育能
指導教授(外文):Yih-Nen Jeng
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1993
畢業學年度:81
語文別:英文
論文頁數:204
中文關鍵詞:格點產生法自調性格點法權函數強制對流局部吸熱傳
外文關鍵詞:Grid GenerationAdaptive GridWeighting FunctionForced Con-
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以新發展之自調性格點法,探討壁上具有吸或吹孔槽之平行流道
內的強制對流之熱傳現象。數值方法採用二維 k- .epsilon. 擾流模式
與邊牆函數近似法,及使用廣義曲線座標之非交錯格點系統、SIMPLE演算
法及Quick scheme 。出口邊界條件方面,延伸Shyy在交錯格點上的方法
,提出了 Contravariant 速度一階外插之新的出口邊界條件,以適合於
非交錯格點系統上之使用。為了配合物理問題之數值模擬,著手於格點之
研究,發展了兩種橢圓型格點產生法,藉由 transfinite 內插法求取內
部控制函數以改進 Steger and Sorenson 方法, 使其具有全邊界格點皆
可適當控制的能力。暨提出了三種橢圓型自調性格點法,主要是結合前述
之格點產生法與 Anderson之自調性格點法,並提出新的權函數型式,使
自調性格點增加全邊界控制的功能與保留初始格點疏密分佈之特性,一系
列流場的測試已證實了本法的適用性。主要探討的物理問題是,經由平行
板壁上的孔槽,以強制吹入或吸出流體的方式來達到局部加強冷卻的效果
。結果顯示此兩種方式皆能局部強化孔槽下游壁面的熱傳,熱邊界採用一
邊絕熱、另一對邊為等溫或均勻熱通量,並探討四種參數:(1)噴流與
主流之動量流通量比、(2)孔槽角度、(3)雷諾數及(4)孔槽位置之
作用,其中前兩者遠較後兩者對於流場與熱傳有明顯之影響,而且當動量
流通量比增大、吹入角增大或吸出角減少時,則局部熱傳效果隨之增強。
吹入型中,送進流道的噴流將穿入主流使其形成一個迴流區,由於這股冷
噴流的作用與分離區內所產生高的擾流強度的作用,增進了壁面的熱傳效
果,而熱傳效果最好的位置則落在 reattachment point 附近。吸出型
的作用則是將來自上游熱壁附近的熱流體吸走,如此將誘導流場產生高的
擾流強度與二次邊界層重新成長,使得孔槽下游的局部熱傳有顯著之改善
﹔比較結果亦得知,吸出型優於吹入型。本文另外以兩矩形凸出塊分別位
於孔槽上下游之較實際模式來模擬IC晶片對於局部熱傳強化之影響,以驗
證平板物理模式之有效性。數值結果顯示,孔槽下游凸出塊表面之局部
Nusselt number 分佈與平板模式下游壁面的熱傳情形類似,而且兩種模
式預測之熱傳局部強化情形也隨著凸塊高度之減少而更加接近。
The local heat transfer enhancement in a parallel duct by local
blowing or suction slot at the heated wall has been numerically
studied on adaptive grid system, which is found from new grid
and adaptive grid generation methods. The flow solver employed
two-dimensional k-.epsilon. turbulent model, wall function
approximation on a generalized nonstaggered grid system and the
SIMPLE algorithm equipped by the QUICK scheme for convective
fluxes. The Sorenson and Steger elliptical grid generation
method is improved to have the function of grid control along
all of the boundaries. The improvement is achieved by
interpolating interior control functions from those found at
boundaries through transfinite interpolation, and two new
elliptic grid generation methods are subsequently developed.
Three new elliptic adaptive grid generation methods are also
developed based on the interpretation of control functions and
Anderson''s adaptive grid method. Among adaptive grid methods,
the most promising one combines present elliptic grid
generation, Anderson adaptive grid methods, and a new method
retaining background grid clustering and stretching. Numerical
test cases have illustrated the feasibility of all the grid
generation and adaptive grid methods. In studying the local
heat transfer enhancement, arrangements introducing a stream of
injecting fluid or sucking fluid through a slot at wall are
employed. Cases of uniform temperature and uniform heat flux at
heated wall, where the opposite wall is adiabatic, are
examined. It is found that both arrangements can enhance the
local heat transfer coefficient at the downstream side of the
slot. The considered situations are described by parameters of
the momentum flux ratio between injected (or and main stream,
slot angle measured from the upstream wall,
摘要
ABSTRACT
ACKNOWLEDGEMENTS
EXTENDED CHINESE ABSTRACT
CONTENTS
LIST OF TABLES
LIST OF FIGURES
NOMENCLATURE
I INTRODUCTION
1.1 Numerical Schemes
1.2 Physical Problem:Heat Transfer Enhancement by Local Blowing/Suction
1.3 Grid and Adaptive Grid Generation
1.4 Boundary Conditions
1.5 Contents and Organization
II THEORETICAL FORMULATION
2.1 Physical Model
2.2 Basic Assumptions
2.3 Governing Equations
2.4 Wall function
2.5 Dimensional Analysis
III NUMERICAL METHOD
3.1 Derivation of Discretized Equation
3.2 Computational Algorithm
3.3 Boundary Conditions
3.4 Convergence Criteria
IV GRID AND ADAPTIVE GRID GENERATION METHOD
4.1 Grid Generation Method
4.2 Adaptive Grid Generation Method
4.3 Validation of the Present Gird Method
V VALIDATION OF BOUNDARY CONDITION, CODE AND ADAPTIVE GRID SYSTEM
5.1 On the Downstream Open Boundary Conditions
5.2 Test Cases of Laminar Flow
5.3 Test Cases of Turbulent Flow
5.4 Adaptive Grid Generation Method
VI LOCAL HEAT TRANSFER ENHANCEMENT OF FORCED CONVECTION BETWEEN FLAT PLATE CHANNEL
6.1 Heat Transfer Enhancement of Forced Convective Flow Between Flat Plates
6.2 Suction Type Heat Transfer Enhancement on Forced Convective Flow Between Flat Plates with A Realistic Wall Model
VII CONCLUSIONS AND FUTURE WORKS
7.1 Summary and Conclusions
7.2 Recommendation for Future Studied
REFERENCES
TABLES
FIGURES
VITA
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊