跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 03:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊世英
研究生(外文):Sing-Ying Yang
論文名稱:在動態網格上以區域隱式法探討穿音速振動葉片流場
論文名稱(外文):Numerical Investigation of Transonic Oscillating Cascade Flows Using a Locally Implicit Scheme on Dynamic Meshes
指導教授:黃啟鐘
指導教授(外文):Chii-Jong Hwang
學位類別:博士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1993
畢業學年度:81
語文別:英文
論文頁數:196
中文關鍵詞:區域隱式動態網格振動葉片
外文關鍵詞:Locally ImplicitDynamic MeshOscillating Cascade
相關次數:
  • 被引用被引用:3
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文發展一個動態混合網格上之區域隱式TVD法和一個改良的動態格點
法來探討穿音速振動葉片流場。在卡式座標系統下求解非穩態歐拉和那維
爾-史托克方程式。為了衡量本文TVD法在混合網格的準確性,本文探
討數個穩態非黏滯和黏滯流場問題。根據數值結果,本文的方法是正確而
有效率的。本文計算非黏滯流繞過對1/4 弦長做和諧振動之單一NACA0012
翼剖面以驗證本文的方法在動態混合網格上之正確性與可靠性。在一週期
之運動中,計算之瞬間壓力係數分佈與相關之數值和實驗值比較情形良好
。為更進一步評估本文中牽涉非零度之葉片相位角之方法,本文計算穿音
速流繞過 180°葉相相位角之二 NACA0006 振動葉片之歐拉解。根據瞬間
壓力係數分佈和升力係數時間過程,本文在週期邊界上採用一個簡單空間
處理法是可靠且強健的。  在兩個網格系統上探討具有不同振動振幅、
減低頻率和葉片相位角之四片振動雙凸面葉片之穿音速流。三角形網格的
每個葉片之前緣和尾緣是尖銳的,而混合網格的前緣和尾緣則修改成半圓
以符合實驗之幾何形狀。根據瞬間壓力係數分佈,使用混合網格可避免使
用三角形網格可能產生之搖擺現象。比較第一和諧動態壓力差係數之大小
與相位角之分佈,本文之解在大部分的例子中皆較線性化理論解更符合實
驗值,特別是紊流次共振之結果。對葉片相位角等於-90°或 90°,流場
行為每隔 1/4 個週期重複且傳遞至上或下一個葉片。本文觀察到,非穩
態非線性之波行為,包括形成、移動、增強、減弱、交互作用、某些通道
流場在某些瞬間阻塞(choking) 及通過尾緣時被截斷之現象。根據升力係
數,可進一步展示,振動大小、葉片相位角和減低頻率對穿音速振動葉片
流場皆有很大的影響。
A locally implicit TVD scheme on dynamic mixed meshes and an
improved dynamic mesh algorithm are developed to investigate
the transonic oscillating cascade flows. The unsteady Euler
and Navier-Stokes equations are solved in a Cartesian
coordinate system. To evaluate the accuracy of present TVD
scheme on mixed meshes, several steady inviscid and viscous
flow problems are investigated. From the numerical results,
the present scheme is accurate and efficient. To validate the
accuracy and reliability of present scheme on dynamic mixed
meshes, inviscid flow around single NACA 0012 airfoil pitching
harmonically about the quarter chord is computed. The
calculated instantaneous pressure coefficient distributions
during a cycle of motion compare well with the related
numerical and experimental data. To further evaluate the
present approach involving nonzero interblade phase angle,
Euler calculations of transonic flow around oscillating
cascade of two unstaggered NACA 0006 blades with interblade
phase angle equal to 180 deg are performed. From the
instantaneous pressure coefficient distributions and time
history of lift coefficient, the present approach, where a
simple spatial treatment is utilized on the periodic
boundaries, is reliable and robust. Transonic flows around
oscillating cascade of four biconvex blades with different
oscillation amplitudes, reduced frequencies and interblade
phase angles are investigated on two mesh systems. The leading
and trailing edges of each blade for the triangular mesh are
sharp, while the edges for mixed mesh are rounded to match the
experimental geometry. From the instantaneous pressure
coefficient distributions, the use of mixed mesh can avoid the
possible wiggles caused by using the triangular mesh.
Comparing the distributions of magnitude and
摘要
ABSTRACT
CONTENTS
NOMENCLATURE
LIST OF FIGURES
I INTRODUCTION
1.1 Motivation of the Study
1.2 Previous Research Works and Present Solution Procedure
1.3 Objectives and Contents of this Thesis
II MATHEMATICAL FORMULATION AND NUMERICAL APPROACHES
2.1 Mathematical Formulation
2.2 Finite Volume Formulation on Mixed Quadrilateral-Triangular Meshes
2.3 Locally Implicit Time Integration
III BOUNDARY CONDITIONS
3.1 Steady Boundary Conditions
3.2 Unsteady Boundary Conditions
3.3 Phase-Shifted and Spatially Periodic Boundary Conditions
IV DYNAMIC MESH ALGORITHM
4.1 Mesh Generations
4.2 Globally Dynamic Mesh Algorithm
4.3 Rigid-Deformable Dynamic Mesh Algorithm
4.4 Geometric Conservation Law
V VALIDATION OF THE SOLUTION PROCEDURE
5.1 Inviscid Flows
5.2 Viscous Flows
VI RESULTS AND DISCUSSION
6.1 Description of Physical Problems
6.2 Mesh Systems, Initial Solutions and Time Periodicity
6.3 Comparisons of Magnitudes and Phase Angles
6.4 Repeating and Proceeding of Instantaneous Flow Phenomena
6.5 Effect of Oscillation Amplitude
6.6 Effect of Interblade Phase Angle
6.7 Effect of Reduced Frequency
6.8 Lift Coefficient Distributions and the Related Discussion
VII CONCLUSIONS AND RECOMMENDATIONS
7.1 Conclusions
7.2 Recommendations
REFERENCES
TABLE
FIGURES
VITA
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top