跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔣岳霖
研究生(外文):Yuen Lin Chiang
論文名稱:即時語音辨認系統中倒頻譜與拜式網路晶片設計
論文名稱(外文):VLSI Design of the Cepstrum and Bayesian Network Chips for Speech Recognition System
指導教授:王駿發;李肇嚴
指導教授(外文):Jhing-Fa Wang;Jau-Yien Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1993
畢業學年度:81
語文別:中文
論文頁數:75
中文關鍵詞:倒頻譜拜式網路晶片辨認語音
外文關鍵詞:cepstrumbayesian newtorkchiprecognitionspeech
相關次數:
  • 被引用被引用:1
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的動機主要在促成即時語音辨認系統的實現,因此我們提出一套以
拜式網路為辨認模式之即時語音辨認系統架構及設計並製做了倒頻譜與拜
式網路晶片。倒頻譜係數由於具有將頻譜封套與細微結構分開的特性,而
廣泛應用於語音辨認系統中,因此我們設計並製做的倒頻譜晶片,而為了
加速該晶片的處理速度,我們採用四級的管線架構,該晶片以 Genesil
做為設計工具,採用 TSMC 1.2 us 製程,並已包裝完成且測試成功,晶
片面積約為 0.55*0.56 cm*cm 、工作頻率18.3Mhz 、求取倒頻譜係數的
時間為4.76us,可充分符合即時系統的要求。在拜式網路晶片中,我們採
用IEEE 754 標準做為晶片的輸入格式,以便該晶片可與 PC 相結合,且
為了擴充的考量,該晶片僅輸出分類類別相異度,目前晶片以設計完成並
使用Verilog模擬成功。

There are two main topics in this thesis, one is the VLSI
implementation for the LPC cepstrum algorithm, and the other is
to present two VLSI architectures for implementing the Bayesian
Network. In the first part, a pipelining architecture for
implementing the 8-stage cepstrum algorithm is proposed. The
circuit performs the cepstrum operation for each frame of the
speech data, and its high speed performance can meet the
requirement of real time speech recognition. The cepstrum chip
is fabricated in 1.2 um double-metal CMOS techinology after the
physical design and circuit verification. According to the
chip testing report by the IMS XL-60 tester, the chip can
normally execute up to 18.3 MHz. On the whole, the chip
contains about 24000 transistors which occupy 227*213 mils2.
The process of Bayesian Network is extremely important and has
been used in a variety of speech processing applications such
as isolated,connected speech recognition, speaker verification,
and identification. A major consideration in evaluating the
performance of a recognizer based on the Bayisian Network is
its computational complexity.In the second part, we present two
floating-point architectures for implementing the digital
Bayesian Network,one based on the CORDIC operations and the
other based on the Computing Convergence Method (CCM). The
whole function of Bayesian architecture has been simulated by
the hardware description language (HDL), Verilog, and its data
format is designed to be compatible with IEEE 754 standard.
Therefore, the recognition model, Bayesian Network, can be
implemented into a single chip and applied to the above
applications.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊