(54.236.58.220) 您好!臺灣時間:2021/03/08 08:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林蔡宗
研究生(外文):Tsai-Zong Lin
論文名稱:利用結構特徵作線上手寫中文文字識別之大分類
論文名稱(外文):Structure features for use in the coarse classification of on- line Chinese character recognition
指導教授:范國清范國清引用關係
指導教授(外文):Kuo-Chin Fan
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊及電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1993
畢業學年度:81
語文別:英文
論文頁數:103
中文關鍵詞:中文文字識別大分類結構特徵
外文關鍵詞:Chinese character recognitionCoarse classificationStructure feature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此論文中,我們提出一個新的大分類策略,用在線上中文文字識別上。
我們定義了六類結構,大分類的主要目的,即是要將線上輸入的中文字歸
類為這六類的其中一類,若此類結構可以被分割,便進一步也將此輸入字
分割成兩部分。我們所提出的大分類方法主要用來分類正楷字、部分連筆
字以及草寫字。我們提出了兩個大分類方法,一個為筆順法,另一個為投
影法。筆順法主要是利用輸入字線段的順序來判斷輸入字屬於那類結構,
而投影法則是利用X,Y軸上的投影來判斷輸入字屬於那類結構。基本上
,筆順法可以處理絕大多數的工作,而在少數特殊的情況下,則需要用投
影法加以輔助。我們測試了十四套5400字的中文字庫,其中包括五套正楷
字庫、兩套部分連筆字庫及七套全連筆字庫。平均的分類率分別為96.7%
、92.8%及91.7%。由實驗結果可看出我們所提出的大分類方法是相當可行
的。

In this thesis, a new coarse classification scheme which
makes use of structure feature for on-line Chinese character
recognition is presented. Six structure types are defined in
this thesis. The main purpose of coarse classification is to
classify on-line Chinese characters into one of the six
structure types and divide them into separated parts
accordingly, if they can be divided. Our proposed coarse
classification scheme can be used to classify the following
three writing style categories : square writing characters,
partial connected characters, and script characters. Two coarse
classification methods are proposed in this thesis. One is
the line segment order method, and another is the projection
method. The line segment order method makes use of the line
segment order embedded in the input character to judge which
kind of structure it belongs to. The projection method makes
use of the projection of the line segments of the considered
character onto the x and y axis to judge which kind of
structure it belongs to. The line segment order method can
classify most of the characters presented in our coarse
classification process, and the projection method is utilized
as the auxiliary method to resolve the ambiguity which can not
be classified using the line segment order method. Fourteen
databases of 5400 frequently used Chinese characters are
tested in our experiment. They include five sets of
square writing characters, two sets of partial connected
characters, and seven sets of full connected
characters. The average recognition rates of square writing
characters, partial connected characters, and full connected
characters are 96.7%, 92.8%, and 91.7%, respectively. The
experimental results show that our coarse classification
scheme is very effective and promising.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔