(3.237.20.246) 您好!臺灣時間:2021/04/15 19:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許登上
研究生(外文):Deng-Sharng Sheu
論文名稱:殊異擾動系統之強韌性穩定界限值及其應用於主動懸吊系統之研究
論文名稱(外文):Robust Stabilization Bounds of Singular Perturbation Systems and Its Application to Active Suspension System
指導教授:李祖聖
指導教授(外文):Tzuu-Hseng S. Li
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1994
畢業學年度:82
語文別:中文
論文頁數:60
中文關鍵詞:離散殊異擾動系統穩定界限值克氏內積主動懸吊系統
外文關鍵詞:Singularly perturbed discrete systemStability bound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,利用狀態空間方法來探討殊異擾動穩定界限值問題題。此法
中,殊異擾動參數被當成結構不確定成份,分別以克氏與貝氏內積技巧,
兩種型式的殊異擾動穩定界限值( 慢速與快速取樣 )皆可精確求得。與現
有文獻比較主要差異為不須繪廣意尼氏圖。本論文第二主題是含有一般擾
動的離散殊異擾動系統之強韌性穩定分析,推導出充份條件來解決當殊異
擾參數可事先知道下之所謂的逆問題。其次,提出一個演算法來得到
pencils矩陣之穩定範圍。此法主要根據貝氏和之非零實數特徵值包含穩
定界限值資訊。不同的應用如雙線性系統、高增益系統及輸出迴授系統用
來測試此法則之有效性。最後,殊異擾動方法被使用來分析被動懸吊系統
之穩定性及設計主動懸吊系統之迴授控制,設計後閉迴路系統之穩定界限
值也被計算得到。

In this thesis, a state space approach is investigated to
determine the exact upper bound of singularly perturbed dis-
crete systems. In this method, the singular pertuebed para-
meter is treated as structure uncertainty. The stability
bounds for the two-type discrete singular perturbed systems (
slow sampling rate and fast sampling rate systems ) have been
determined via the Kronecker product and the Bialternate
product techniques. Compared with present literature, the
main difference is that no Nyquist plot is needed. The second
topic of this thesis is to examine the robust stability of
regular perturbation in the discrete singular perturbation
systems. A sufficient condition is derived and the so-called "
inverse " problem is solved in these systems when singular
perturbation parameter is supposed to be known in advance.
Next, an algorithm is proposed to acquire the stability range
of the pencils matrix when the nominal system is unstable.
The algorithm is based on the fact that the set of nonzeros
eigenvalues of Kronecker sum contains the information of
critical values on stability. Several application such as the
the bilinear system, the high gain system and the output
feedbak system is utilized to demonstrate the effectiveness of
the proposed scheme. Finally, the singular perturbation
methodology is employed to test the stability of the passive
suspension system. The upper bound of the resulting closed-
system is also caculated.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔