跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/28 23:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳錫銘
研究生(外文):Shi-Ming Chen
論文名稱:銻化鎵相關化合物半導體量子井,超晶格和紅外線光檢測器之光電轉移和特性研究
論文名稱(外文):Photoelectric Transitions and Chacterizations of GaSb Compound Quantum Well, Superlattices and Infrared Photodetectors
指導教授:蘇炎坤, 盧炎田
指導教授(外文):Yan-Kuin Su, Yan-Ten Lu
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1995
畢業學年度:83
語文別:英文
論文頁數:172
中文關鍵詞:超晶格
外文關鍵詞:FTIRMOCVDenvelope function
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
未摻雜的銻化鎵,不管用那種成長技術總是 p型,且小於 550℃ 之成長
溫度下,成長晶膜之室溫載子移動率太低,因此藉由研究其 p型形成之原
因,以達到改善銻化鎵之品質,對於本質 p 型銻化鎵,我們可以得到室
溫最高的電洞移動率與最低的電洞濃度,分別為 758cm2 /V*sec 和
9×10E15cm-3。 並且發現晶膜的型態會在低於450℃時由 p型轉成 n 型
。使用銻化銦鎵 /銻化鎵應力層超晶格,可以製成一種有趣的雙頻光檢測
器,此一種結構對於重電洞為第一類超晶格;而對於輕電洞卻成為第二類
超晶格。從理論計算與實驗可驗證在-0.01V和 -0.1V下,其兩個主要的波
長分別是 1.92 和 1.77 um,因此我們證實電壓可以改變吸收之模組。若
於其他材料系統,良好的組成與厚度控制可以實現並應用於半導體之雙頻
行為。對於銻化鎵/砷化銦超晶格而言,C1-HH1 和C1-LH1屬於第二類之極
端類型。基於 Kronig-Penney之解析公式, 緊束縛方法和轉移矩陣來分析
超晶格之轉移值與特徵向量。次子帶吸收乃源自於重電洞與輕電洞之帶混
成,其波長於室溫是13.9um。而帶與帶間吸收乃源自於砷化銦之電子波函
數和銻化鎵之重電洞波函數之耦合,其波長於室溫下為4.73um,不管帶間
與次帶間轉移,從實驗與計算得到,其波長分別在 3-5um和8-14um兩個最
有用的紅外線波長範圍。因此砷化銦 /銻化鎵超晶格這些有趣現象,使得
其可以實際應用於紅外光之光檢測元件。
Undoped GaSb epilayers grown by a variety of techniques are
always p-type. The formation reason of p-type s studied in
order to improve the quality of GaSb epilayer. For undoped p-
type GaSbhighest mobility and the lowest concentration are 758
cm2/V.sec and 9.0x10E15cm-3 at 300. The type of GaSb epilayer
is changed from p-type to n-type whenis below 450C. An
interesting two-mode photodector is constructed using an
strained-layer superlattice (SLS) structure. From calculations,
the wavelengths of dominant absorptions are at 1.92 and 1.77
um.1 eV bias, respectively. Thus, we show that the mode of
absorption may bepplied voltage. In another material systems,
the control of thickness and then the way to realizing this new
two-mode behavior for a number of applications of For GaSb/InAs
superlattices, both the C1-HH1 and C1-LH1 areof type II
systems. The formalism of Kronig-Penney model, the tight-
binding methodtrix method are used to analyze the eigenvalues
and the wavefunctions of The intersubband absorption results
from the mixing of thees and the light-hole states and the
absorption peak of the HH1-LH1 transition is at 13.9 um (89.2
meV) at 300 K. The interband absorption is a result of then the
C1 wavefunction of InAs layer and the HH1 wavefunction of GaSb
layer and the absorption peak at 300(262 meV). The interband
and the intersubband transitions in the ranges of8-14 um IR
wavelength are demonstrated from the calculated and
experimental results. The interestinge GaSb/InAs superlattice
make it a promising candidate for practical device
applicationsodevices.
Cover
ABSTRACT (in Chinese)
ABSTRACT (in English)
ACKNOWLEDGEMENT
CONTENT
TABLE CAPTIONS
FIGURE CAPTIONS
CHAPTER 1. INTRODUCTION
1.1 Overview of quantum well and superlattice structures
1.2 Basic understanding of GaSb compound semiconductors
1.3 Emphasises of this dissertation
1.4 Organization of this dissertation
CHAPTER 2. CHARACTERIZATIONS OF GaSb EPLIAYERS
2.1 Fomation of p-type epiiayer
2.2 Fomation of n-type epiiayer
2.3 Differential Hall method
CHAPTER 3. CHARACTERIZATIONS OF lnGaSb, lnAsSb AND lnAs EPILAYERS
3.1 lnGaSb/GaSb heterostructure growth
3.2 lnAsSb/GaSb heterostructure growth
3.3 GaSb/lnAs superlattices growth
CHAPTER 4. THEORETICAL MODELS FOR QUANTUM WELLS AND SUPERLATTICES
4.1 Time-independent Schrodinger equation and numerical techanique
4.2 One-Band model for superlattices
4.3 Two-Band and three-band models for Superlattices
4.4 Tight-binding method
4.5 Transfer matrix method
CHAPTER 5. PHOTOELECTRIC PROPERTIES OF lnGaSb STRAINED-LAYER SUPERLATTICES
5.1 Critical thickness of lnGaSb/GaSb strained layer
5.2 Comparsion of period of lnGaSb//gaSb strained-layer superlattices
5.3 Stained effects on lnGaSb/GaSb strained-layer superlattices
5.4 Wavefunction couplings in lnGaSb/GaSb strained-layer superlattices
5.5 Two-mode inGaSb/GaSb infrared Photodetector
CHAPTER 6. OPTICAL TRANSITIONS IN GasB/lnAsSb SUPERLATTICES
6.1 Theoretical models for GaSb/lnAsSb superlattices
6.2 lnter-band and inter-subband optical transitions in GaSb/inAs Superlattices
6.3 Doping effect in GaSb/lnAs superlattices
6.4 The effects of cap and buffer layers in GaSb/inAs superlattices
CHAPTER 7. CONCLUSIONS
7.1 Conclusion and contributions in this disertation
7.2 Recommendations for future work
Bibliography
VITA
PUBLICATION LIST
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top