跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 18:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾堅信
研究生(外文):Jian-Shihn Tsang
論文名稱:半導體量子井雷射元件及材料之研究
論文名稱(外文):Studies of Semiconductor Quantum Well Lasers and Their Material Properties
指導教授:李建平李建平引用關係
指導教授(外文):Chien-Ping Lee
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:1995
畢業學年度:83
語文別:英文
論文頁數:160
中文關鍵詞:半導體雷射量子井
外文關鍵詞:semiconductorlaserquantum well
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的目的在於分析與研究半導體量子井雷射的元件結構、元件特性與
元件製作,以及相關材料技術的開發。在元件分析及製作方面,我們模擬
並製作出具有低起始電流密度和小遠遠場角度的 0.98 微米波長扭曲層單
量子井雷射元件。在光侷限層是具有鋁莫耳分率為 0.4 的砷化鋁鎵,且
漸變光導層為 0.1 微米厚度時,此雷射元件所獲得的最低起始電流密度
為 207 A/㎝2 且其遠場角度為 27度。另外,我們藉由引入吸收區於雷射
陣列中,成功地製作出可在基模操作的雷射陣列。同時,我們利用p-i-n-
i-n 的結構,成功地將量子井雷射和多量子井紅外線偵測器垂直積體化。
在相關材料技術的開發上,我們發現適量 (~1x1019 cm-3) 的銦原子摻雜
在量子井雷射之砷化鋁鎵光導層中,可使雷射的臨界電流密度顯著改善。
其改善的原因是高遷移率的銦原子導致鎵空穴的濃度降低所致。另外,我
們也成功地發展出無雜質的成份混合技術。此技術是藉由低溫砷化鎵磊晶
膜中所含的鎵空穴來加速成份混合的速率。在此研究中,我們發現磊晶膜
愈厚,成份混合的速率愈快; 磊晶膜成長在超晶格結構上方比成長在底部
能更有效率的加快混合速率。同時,我們亦成功地發展出選擇性蝕刻技術
以利未來的應用。此混合技術也成功地運用在不同材料系列上,如砷化銦
鎵/砷化鎵超晶格結構。在研究其混合機制時,擴散方程式及薛丁格方程
式被用來計算量子井結構的成份分布及其受熱後能階的變化。由計算所得
之缺陷的活化能可可知:低溫砷化鎵磊晶膜中的鎵空穴確實是引起成份混
合的原因。
In this disertation, we study the device performance and the
related material technologies of semiconductor quantum well
lasers. The optimum structure for 980nm laser has the Al mole
fraction of 0.4 and the guiding layer thickness of 100 nm. The
threshold current density is 207 A/cm^2 and the far field angle
is 27 degree. A proper amount of In atoms doping in the AlGaAs
guiding layers has been found to reduce the threshold current
due to the reduction of the group III vacancies. The vertical p-
i-n-i-n structure was used to integrate the quantum well laser
and the quantum well infrared photodetector. Compositional
disor- dering of AlGaAs/GaAs superlattice has been observed by
PL and SIMS measurement. It was found that LT- GaAs layer grown
on top of the superlattice is more effective in causing
disordering than the LT-GaAs layer grown on the bottom. The
amount of disordering increases with the thickness of the LT-
GaAs layer. A selective disordering process has been
successfully developed by using a patterned LT-GaAs cap layer.
Besides the AlGaAs /GaAs super- lattice, the use of the LT-GaAs
cap layer to enhance the disor- dering of the InGaAs/GaAs
superlattice has also been studied. From the theoretical
simulations, Ga-vacancy-enhanced inter- diffusion was found to
be the mechanism underlying the observed intermixing.
COVER
Contents
Table Captions
Figure Captions
Chapter I Introduction
I.I Overview
1.2 Outline of this Dissertation
Chapter 2 Effects of Al Composition and Guiding Layer Thickness on the Characteristics of InGaAs/GaAs/AIGaAs Single Quantum well Graded-index Separated Confinement
Heterostructure Lasers
2.1 Introduction
2.2 Theory
2.3 Experimental
2.4 Summary
Chapter 3 Fundamental Mode Operation of High Power InGaAs / GaAs / AIGaAs Laser arrays
3.1 Introduction
3.2 Epitaxial Structure and Fabrication Procedures
3.3 Results and Discussion
3.4 Summary
Chapter 4 Vertical Integration of a GaAs/AIGaAs Quantum Well Laser and a Long Wavelength Quantum Well Infrared Photodetector
4.1 Introduction
4.2 Fabrication of Integrated Devices
4.3 Experimental Results
4.4 Summary
Chapter 5 Investigation of Indium Doping in InGaAs/GaAs/AIGaAs Graded-Index Separated Confinement Heterostructure Lasers
5.1 Introduction
5.2 Growth Conditions and Fabrications of Lasers
5.3 Results and Discussions
5.4 Summary
Chapter 6 Effects of Low Temperature Grown GaAs Layer on Compositional Disordering of AIGaAs/GaAs and InGaAs/GaAs superlattices
6.1 Introduction
6.2 Experimental
6.4 Summary
Chapter 7 Kinetics of Compositional Disordering of AIGaAs/GaAs and InGaAs/GaAs Quantum Wells Induced by LT-GaAs
7.1 Introduction
7.2 Kinetics of Compositional Disordering of AIGaAs/GaAs Quantum wells Induced by LT-GaAs
7.2.1 Experimental
7.2.2 Diffusion Model
7.2.3 Results and Discussion
7.3 Kinetics of Compositional Disordering of InGaAs/GaAs Quantum wells Induced by LT-GaAs
7.3.1 Experimental
7.3.2 Diffusion Model
7.3.3 Results and Discussion
7.4 Comparison of AI-Ga and In-Ga Diffusion Induced by LT-GaAs
7.5 Summary
Chapter 8 Molecular Beam Epitaxy and Related Analysis Systems
8.1 Molecular Beam Epitaxy Growth Technique
8.2 Reflection High Energy Electron Diffraction (RHEED) Oscillation
8.3 Photoluminescence (PL)
8.4 Deep Level Transient Spectroscopy
8.5 Secondary Ion Mass Spectrometry (SIMS)
8.6 Double Crystal X-Ray Diffraction (DCXRD)
Chapter 9 Conclusions
Vita
Publication List
OTHERS
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊