跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/07/28 03:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:倪仲明
研究生(外文):NI, CHUNG MING
論文名稱:油膜軸頸軸承轉子動態系統探討
論文名稱(外文):Dynamic modeling of flexible rotor shafts mounted on hydrodynamic bearing
指導教授:陳精一陳精一引用關係
指導教授(外文):Chen, Jing-Yi
學位類別:碩士
校院名稱:中華大學
系所名稱:航空太空工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1997
畢業學年度:85
語文別:中文
論文頁數:113
中文關鍵詞:撓性轉子油膜軸承阻抗航空學太空學太空船
外文關鍵詞:flexible rotoroil-film bearingimpedanceAERONAUTICSAEROSPACEAIR-SHIP
相關次數:
  • 被引用被引用:1
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
The object of this paper is studying dynamic behavior of
rotor_bearing system.A rotor-bearing system which consists of a
flexible shaft, eccentricity disks,and bearings. The shaft is
modeled as finite rotating shaft elements. The disks and
bearings are represented as concentrated mass. Particularly, the
discussion of bearins have two way, first, the lubricated
bearings is simulated as springs and damper in two perpendicular
directions, second, the lubricated bearings will be represented
using the impedance theory.The analytical method of the research
adopt energy principle. First, rotor-bearing system divide two
subsystems, flexible rotor shaft-disk subsystem and bearing-
support structure subsystem, respectively. Then we calculate
dynamic energy, potential energy and dissipation function in
subsystem. In order to derive the general equations of motion,
the Lagrange principle is applied. The whole system equation is
represented as the absolute coordinate system or rotating
coordinate system.When whole rotor-bearing system equation of
motion is derived, we use Newmark method toderive motion orbit
graph of system. In this paper, we analyze two-bearing one-mass
and three-bearing two-masses rotor system. For two rotor-bearing
systems with short bearing and finite length bearing analysis
are very similar in motion state. However, long bearing analysis
result is not good.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊